Suppr超能文献

基于图神经网络和近似贝叶斯计算推断复杂系统的交互规则。

Inferring the interaction rules of complex systems with graph neural networks and approximate Bayesian computation.

机构信息

School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8SQ, UK.

Grupo de Ecología Cuantitativa, INIBIOMA-CONICET, Universidad Nacional del Comahue, Bariloche, Argentina.

出版信息

J R Soc Interface. 2023 Jan;20(198):20220676. doi: 10.1098/rsif.2022.0676. Epub 2023 Jan 4.

Abstract

Inferring the underlying processes that drive collective behaviour in biological and social systems is a significant statistical and computational challenge. While simulation models have been successful in qualitatively capturing many of the phenomena observed in these systems in a variety of domains, formally fitting these models to data remains intractable. Recently, approximate Bayesian computation (ABC) has been shown to be an effective approach to inference if the likelihood function for a model is unavailable. However, a key difficulty in successfully implementing ABC lies with the design, selection and weighting of appropriate summary statistics, a challenge that is especially acute when modelling high dimensional complex systems. In this work, we combine a Gaussian process accelerated ABC method with the automatic learning of summary statistics via graph neural networks. Our approach bypasses the need to design a model-specific set of summary statistics for inference. Instead, we encode relational inductive biases into a neural network using a graph embedding and then extract summary statistics automatically from simulation data. To evaluate our framework, we use a model of collective animal movement as a test bed and compare our method to a standard summary statistics approach and a linear regression-based algorithm.

摘要

推断生物和社会系统中驱动集体行为的潜在过程是一个重大的统计和计算挑战。虽然模拟模型已经成功地在各种领域定性地捕捉到了这些系统中观察到的许多现象,但正式拟合这些模型到数据仍然是难以处理的。最近,近似贝叶斯计算(ABC)已被证明是一种有效的推断方法,如果模型的似然函数不可用。然而,在成功实施 ABC 方面的一个关键困难在于适当的摘要统计量的设计、选择和加权,当对高维复杂系统进行建模时,这一挑战尤其尖锐。在这项工作中,我们结合了一个高斯过程加速 ABC 方法和通过图神经网络自动学习摘要统计量。我们的方法绕过了为推断设计特定于模型的一组摘要统计量的需要。相反,我们使用图嵌入将关系归纳偏差编码到神经网络中,然后从模拟数据中自动提取摘要统计量。为了评估我们的框架,我们使用集体动物运动模型作为测试床,并将我们的方法与标准摘要统计方法和基于线性回归的算法进行比较。

相似文献

3
Convolutional Neural Networks as Summary Statistics for Approximate Bayesian Computation.卷积神经网络作为近似贝叶斯计算的汇总统计量。
IEEE/ACM Trans Comput Biol Bioinform. 2022 Nov-Dec;19(6):3353-3365. doi: 10.1109/TCBB.2021.3108695. Epub 2022 Dec 8.
8
Towards end-to-end likelihood-free inference with convolutional neural networks.端到端的无似然推断卷积神经网络。
Br J Math Stat Psychol. 2020 Feb;73(1):23-43. doi: 10.1111/bmsp.12159. Epub 2019 Feb 22.

引用本文的文献

本文引用的文献

1
Understanding Pooling in Graph Neural Networks.理解图神经网络中的池化
IEEE Trans Neural Netw Learn Syst. 2024 Feb;35(2):2708-2718. doi: 10.1109/TNNLS.2022.3190922. Epub 2024 Feb 5.
3
Convolutional Neural Networks as Summary Statistics for Approximate Bayesian Computation.卷积神经网络作为近似贝叶斯计算的汇总统计量。
IEEE/ACM Trans Comput Biol Bioinform. 2022 Nov-Dec;19(6):3353-3365. doi: 10.1109/TCBB.2021.3108695. Epub 2022 Dec 8.
4
The frontier of simulation-based inference.基于模拟的推断前沿。
Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30055-30062. doi: 10.1073/pnas.1912789117. Epub 2020 May 29.
6
A statistical physics view of swarming bacteria.群居细菌的统计物理学视角。
Mov Ecol. 2019 Mar 15;7:9. doi: 10.1186/s40462-019-0153-9. eCollection 2019.
8
Deep learning.深度学习。
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验