Suppr超能文献

随机森林、语音象征和宝可梦进化。

Random forests, sound symbolism and Pokémon evolution.

机构信息

International Communication, Nagoya University of Commerce and Business, Nagoya, Aichi, Japan.

Department Leibniz-Zentrum Allgemeine Sprachwissenschaft, Berlin, Germany.

出版信息

PLoS One. 2023 Jan 4;18(1):e0279350. doi: 10.1371/journal.pone.0279350. eCollection 2023.

Abstract

This study constructs machine learning algorithms that are trained to classify samples using sound symbolism, and then it reports on an experiment designed to measure their understanding against human participants. Random forests are trained using the names of Pokémon, which are fictional video game characters, and their evolutionary status. Pokémon undergo evolution when certain in-game conditions are met. Evolution changes the appearance, abilities, and names of Pokémon. In the first experiment, we train three random forests using the sounds that make up the names of Japanese, Chinese, and Korean Pokémon to classify Pokémon into pre-evolution and post-evolution categories. We then train a fourth random forest using the results of an elicitation experiment whereby Japanese participants named previously unseen Pokémon. In Experiment 2, we reproduce those random forests with name length as a feature and compare the performance of the random forests against humans in a classification experiment whereby Japanese participants classified the names elicited in Experiment 1 into pre-and post-evolution categories. Experiment 2 reveals an issue pertaining to overfitting in Experiment 1 which we resolve using a novel cross-validation method. The results show that the random forests are efficient learners of systematic sound-meaning correspondence patterns and can classify samples with greater accuracy than the human participants.

摘要

本研究构建了机器学习算法,这些算法经过训练可以使用语音象征主义对样本进行分类,然后报告了一项旨在衡量其理解能力的实验,实验对象为人类参与者。随机森林使用虚构视频游戏角色“口袋妖怪”的名称及其进化状态进行训练。当满足特定游戏条件时,口袋妖怪会进化。进化会改变口袋妖怪的外观、能力和名称。在第一个实验中,我们使用构成日语、汉语和韩语口袋妖怪名称的声音来训练三个随机森林,将口袋妖怪分为进化前和进化后两类。然后,我们使用一项诱发实验的结果来训练第四个随机森林,该实验要求日本参与者为之前未见过的口袋妖怪命名。在实验 2 中,我们以名称长度为特征再现了这些随机森林,并在分类实验中比较了随机森林和人类的性能,在该实验中,日本参与者将实验 1 中诱发的名称分为进化前和进化后两类。实验 2 揭示了实验 1 中存在的过拟合问题,我们使用一种新的交叉验证方法解决了这个问题。结果表明,随机森林是系统的语音-语义对应模式的有效学习者,可以比人类参与者更准确地对样本进行分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/627d/9812336/46ed027c2d35/pone.0279350.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验