Google Health, Palo Alto, CA, USA.
DeepMind, London, UK.
Nature. 2020 Jan;577(7788):89-94. doi: 10.1038/s41586-019-1799-6. Epub 2020 Jan 1.
Screening mammography aims to identify breast cancer at earlier stages of the disease, when treatment can be more successful. Despite the existence of screening programmes worldwide, the interpretation of mammograms is affected by high rates of false positives and false negatives. Here we present an artificial intelligence (AI) system that is capable of surpassing human experts in breast cancer prediction. To assess its performance in the clinical setting, we curated a large representative dataset from the UK and a large enriched dataset from the USA. We show an absolute reduction of 5.7% and 1.2% (USA and UK) in false positives and 9.4% and 2.7% in false negatives. We provide evidence of the ability of the system to generalize from the UK to the USA. In an independent study of six radiologists, the AI system outperformed all of the human readers: the area under the receiver operating characteristic curve (AUC-ROC) for the AI system was greater than the AUC-ROC for the average radiologist by an absolute margin of 11.5%. We ran a simulation in which the AI system participated in the double-reading process that is used in the UK, and found that the AI system maintained non-inferior performance and reduced the workload of the second reader by 88%. This robust assessment of the AI system paves the way for clinical trials to improve the accuracy and efficiency of breast cancer screening.
乳腺 X 光筛查旨在更早地发现乳腺癌,从而提高治疗成功率。尽管全球范围内都设有筛查项目,但乳腺 X 光片的判读仍存在大量的假阳性和假阴性结果。在此,我们介绍了一种人工智能(AI)系统,该系统在乳腺癌预测方面能够超越人类专家。为了评估其在临床环境中的性能,我们从英国和美国分别整理了一个大型代表性数据集和一个大型富集数据集。结果显示,假阳性率分别降低了 5.7%和 1.2%(美国和英国),假阴性率降低了 9.4%和 2.7%。我们提供的证据表明,该系统有能力从英国推广到美国。在对 6 名放射科医生进行的独立研究中,该 AI 系统的表现优于所有人类读者:AI 系统的接收器工作特征曲线下面积(AUC-ROC)比平均放射科医生的 AUC-ROC 高出 11.5%。我们进行了一项模拟实验,AI 系统参与了英国目前采用的双读片流程,结果发现 AI 系统能够保持非劣势表现,并将第二读片医生的工作量减少 88%。这项对 AI 系统的稳健评估为临床试验提供了支持,有望提高乳腺癌筛查的准确性和效率。
Medicina (Kaunas). 2025-4-26
World J Crit Care Med. 2025-9-9
Mayo Clin Proc Digit Health. 2025-7-18
Cancers (Basel). 2025-8-2
Bladder (San Franc). 2025-4-10
Sci Rep. 2018-3-15
J Am Coll Radiol. 2018-3