Suppr超能文献

掺杂剂对赤铁矿中小极化子迁移率和电导率的影响-无序的作用。

The impacts of dopants on the small polaron mobility and conductivity in hematite - the role of disorder.

机构信息

Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.

Department of Physics, University of California, Santa Cruz, CA, 95064, USA.

出版信息

Nanoscale. 2023 Jan 27;15(4):1619-1628. doi: 10.1039/d2nr04807h.

Abstract

Hematite (α-FeO) is a promising transition metal oxide for various energy conversion and storage applications due to its advantages of low cost, high abundance, and good chemical stability. However, its low carrier mobility and electrical conductivity have hindered the wide application of hematite-based devices. Fundamentally, this is mainly caused by the formation of small polarons, which show conduction through thermally activated hopping. Atomic doping is one of the most promising approaches for improving the electrical conductivity in hematite. However, its impact on the carrier mobility and electrical conductivity of hematite at the atomic level remains to be illusive. In this work, through a kinetic Monte-Carlo sampling approach for diffusion coefficients combined with carrier concentrations computed under charge neutrality conditions, we obtained the electrical conductivity of the doped hematite. We considered the contributions from individual Fe-O layers, given that the in-plane carrier transport dominates. We then studied how different dopants impact the carrier mobility in hematite using Sn, Ti, and Nb as prototypical examples. We found that the carrier mobility change is closely correlated with the local distortion of Fe-Fe pairs, the more stretched the Fe-Fe pairs are compared to the pristine systems, the lower the carrier mobility will be. Therefore, elements which limit the distortion of Fe-Fe pair distances from pristine are more desired for higher carrier mobility in hematite. The calculated local structure and pair distribution functions of the doped systems have remarkable agreement with the experimental EXAFS measurements on hematite nanowires, which further validates our first-principles predictions. Our work revealed how dopants impact the carrier mobility and electrical conductivity of hematite and provided practical guidelines to experimentalists on the choice of dopants for the optimal electrical conductivity of hematite and the performance of hematite-based devices.

摘要

赤铁矿 (α-FeO) 是一种很有前途的过渡金属氧化物,由于其成本低、丰度高、化学稳定性好等优点,可用于各种能量转换和存储应用。然而,其载流子迁移率和电导率低,限制了基于赤铁矿的器件的广泛应用。从根本上讲,这主要是由于小极化子的形成,小极化子通过热激活跳跃来实现传导。原子掺杂是提高赤铁矿电导率最有前途的方法之一。然而,其对原子水平赤铁矿载流子迁移率和电导率的影响仍不清楚。在这项工作中,通过扩散系数的动力学蒙特卡罗抽样方法和在电荷中性条件下计算的载流子浓度,我们得到了掺杂赤铁矿的电导率。我们考虑了单个 Fe-O 层的贡献,因为面内载流子输运占主导地位。然后,我们使用 Sn、Ti 和 Nb 作为典型例子研究了不同掺杂剂如何影响赤铁矿中的载流子迁移率。我们发现,载流子迁移率的变化与 Fe-Fe 对的局部变形密切相关,与原始系统相比,Fe-Fe 对拉伸得越厉害,载流子迁移率越低。因此,对于更高的载流子迁移率,限制 Fe-Fe 对距离原始状态变形的元素在赤铁矿中更受欢迎。掺杂体系的局部结构和配分函数与赤铁矿纳米线的实验 EXAFS 测量结果具有很好的一致性,进一步验证了我们的第一性原理预测。我们的工作揭示了掺杂剂如何影响赤铁矿的载流子迁移率和电导率,并为实验人员提供了关于选择掺杂剂以获得赤铁矿的最佳电导率和赤铁矿基器件性能的实用指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验