Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany.
Nanoscale. 2023 Jan 27;15(4):1782-1793. doi: 10.1039/d2nr04510a.
Nanofluidic channels in which the ionic transport can be modulated by the application of an external voltage to the nanochannel walls have been described as nanofluidic field effect transistors (nFETs) because of their analogy with electrolyte-gated field effect transistors. The creation of nFETs is attracting increasing attention due to the possibility of controlling ion transport by using an external voltage as a non-invasive stimulus. In this work, we show that it is possible to extend the actuation range of nFETs by using the supporting electrolyte as a "chemical effector". For this aim, a gold-coated poly(ethylene terephthalate) (PET) membrane was modified with electroactive poly--aminophenol. By exploiting the interaction between the electroactive poly--aminophenol and the ions in the electrolyte solution, the magnitude and surface charge of the nanochannels were fine-tuned. In this way, by setting the electrolyte nature it has been possible to set different ion transport regimes, : cation-selective or anion-selective ion transport, whereas the rectification efficiency of the ionic transport was controlled by the gate voltage applied to the electroactive polymer layer. Remarkably, under both regimes, the platform displays a reversible and rapid response. We believe that this strategy to preset the actuation range of nFETs by using the supporting electrolyte as a chemical effector can be extended to other devices, thus offering new opportunities for the development of stimulus-responsive solid-state nanochannels.
在纳米通道壁上施加外部电压可以调节离子传输的纳米通道被描述为纳米流体场效应晶体管(nFET),因为它们与电解质门控场效应晶体管类似。由于可以使用外部电压作为非侵入性刺激来控制离子传输,因此 nFET 的创建引起了越来越多的关注。在这项工作中,我们表明可以通过将支持电解质用作“化学效应物”来扩展 nFET 的致动范围。为此,用聚(对苯二甲酸乙二酯)(PET)膜修饰了金涂层,该膜涂有电活性聚--氨基酚。通过利用电活性聚--氨基酚与电解质溶液中离子之间的相互作用,可以微调纳米通道的大小和表面电荷。通过这种方式,可以通过设置电解质的性质来设置不同的离子传输模式,即阳离子选择性或阴离子选择性离子传输,而离子传输的整流效率则由施加到电活性聚合物层的栅极电压控制。值得注意的是,在这两种模式下,该平台均显示出可重复且快速的响应。我们相信,通过使用支持电解质作为化学效应物来预设 nFET 的致动范围的这种策略可以扩展到其他设备,从而为开发对刺激响应的固态纳米通道提供新的机会。