Nikitin Maxim P
Sirius University of Science and Technology, Sochi, Russia.
Abisense LLC, Dolgoprudny, Moscow Region, Russia.
Nat Chem. 2023 Jan;15(1):70-82. doi: 10.1038/s41557-022-01111-y. Epub 2023 Jan 5.
The discovery of the DNA double helix has revolutionized our understanding of data processing in living systems, with the complementarity of the two DNA strands providing a reliable mechanism for the storage of hereditary information. Here I reveal the 'strand commutation' phenomenon-a fundamentally different mechanism of information storage and processing by DNA/RNA based on the reversible low-affinity interactions of essentially non-complementary nucleic acids. I demonstrate this mechanism by constructing a memory circuit, a 5-min square-root circuit for 4-bit inputs comprising only nine processing ssDNAs, simulating a 572-input AND gate (surpassing the bitness of current electronic computers), and elementary algebra systems with continuously changing variables. Most importantly, I show potential pathways of gene regulation with strands of maximum non-complementarity to the gene sequence that may be key to the reduction of off-target therapeutic effects. This Article uncovers the information-processing power of the low-affinity interactions that may underlie major processes in an organism-from short-term memory to cancer, ageing and evolution.
DNA双螺旋结构的发现彻底改变了我们对生命系统中数据处理的理解,两条DNA链的互补性为遗传信息的存储提供了一种可靠机制。在此,我揭示了“链交换”现象——一种基于基本非互补核酸的可逆低亲和力相互作用的、与DNA/RNA截然不同的信息存储和处理机制。我通过构建一个存储电路来演示这一机制,这是一个用于4位输入的5分钟平方根电路,仅由九条处理单链DNA组成,模拟了一个572输入的与门(超过了当前电子计算机的位数),以及具有连续变化变量的基本代数系统。最重要的是,我展示了与基因序列具有最大非互补性的链的潜在基因调控途径,这可能是降低脱靶治疗效果的关键。本文揭示了低亲和力相互作用的信息处理能力,这种相互作用可能是生物体中从短期记忆到癌症、衰老和进化等主要过程的基础。