Suppr超能文献

对比增强谐波内镜超声(CH-EUS)MASTER:一种基于新型深度学习的胰腺肿块诊断系统。

Contrast-enhanced harmonic endoscopic ultrasound (CH-EUS) MASTER: A novel deep learning-based system in pancreatic mass diagnosis.

机构信息

Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China.

Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Central South University, Changsha, China.

出版信息

Cancer Med. 2023 Apr;12(7):7962-7973. doi: 10.1002/cam4.5578. Epub 2023 Jan 6.

Abstract

BACKGROUND AND AIMS

Distinguishing pancreatic cancer from nonneoplastic masses is critical and remains a clinical challenge. The study aims to construct a deep learning-based artificial intelligence system to facilitate pancreatic mass diagnosis, and to guide EUS-guided fine-needle aspiration (EUS-FNA) in real time.

METHODS

This is a prospective study. The CH-EUS MASTER system is composed of Model 1 (real-time capture and segmentation) and Model 2 (benign and malignant identification). It was developed using deep convolutional neural networks and Random Forest algorithm. Patients with pancreatic masses undergoing CH-EUS examinations followed by EUS-FNA were recruited. All patients underwent CH-EUS and were diagnosed both by endoscopists and CH-EUS MASTER. After diagnosis, they were randomly assigned to undergo EUS-FNA with or without CH-EUS MASTER guidance.

RESULTS

Compared with manual labeling by experts, the average overlap rate of Model 1 was 0.708. In the independent CH-EUS video testing set, Model 2 generated an accuracy of 88.9% in identifying malignant tumors. In clinical trial, the accuracy, sensitivity, and specificity for diagnosing pancreatic masses by CH-EUS MASTER were significantly better than that of endoscopists. The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value were respectively 93.8%, 90.9%, 100%, 100%, and 83.3% by CH-EUS MASTER guided EUS-FNA, and were not significantly different compared to the control group. CH-EUS MASTER-guided EUS-FNA significantly improved the first-pass diagnostic yield.

CONCLUSION

CH-EUS MASTER is a promising artificial intelligence system diagnosing malignant and benign pancreatic masses and may guide FNA in real time.

TRIAL REGISTRATION NUMBER

NCT04607720.

摘要

背景与目的

鉴别胰腺良恶性肿瘤至关重要,但仍具挑战性。本研究旨在构建一种基于深度学习的人工智能系统,以辅助胰腺肿块诊断,并实时指导 EUS-FNA。

方法

前瞻性研究。CH-EUS MASTER 系统由模型 1(实时采集和分割)和模型 2(良恶性鉴别)组成。它使用深度卷积神经网络和随机森林算法开发。纳入接受 CH-EUS 检查并随后行 EUS-FNA 的胰腺肿块患者。所有患者均接受 CH-EUS 检查,由内镜医生和 CH-EUS MASTER 进行诊断。诊断后,患者随机分为接受有或无 CH-EUS MASTER 指导的 EUS-FNA。

结果

与专家手动标注相比,模型 1 的平均重叠率为 0.708。在独立的 CH-EUS 视频测试集中,模型 2 对恶性肿瘤的识别准确率为 88.9%。在临床试验中,CH-EUS MASTER 诊断胰腺肿块的准确率、敏感度和特异度明显优于内镜医生。CH-EUS MASTER 引导的 EUS-FNA 的准确率、敏感度、特异度、阳性预测值和阴性预测值分别为 93.8%、90.9%、100%、100%和 83.3%,与对照组无显著差异。CH-EUS MASTER 引导的 EUS-FNA 显著提高了首次诊断的阳性率。

结论

CH-EUS MASTER 是一种有前途的人工智能系统,可用于诊断胰腺良恶性肿瘤,并可实时指导 FNA。

临床试验注册号

NCT04607720。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57c6/10134340/51fab619d997/CAM4-12-7962-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验