NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Wenhuaxi Road 44, Jinan 250012, China.
National Glycoengineering Research Center, Shandong University, Qingdao 266237, China.
Molecules. 2023 Jan 3;28(1):406. doi: 10.3390/molecules28010406.
Given the labor-consuming nature of model establishment, model transfer has become a considerable topic in the study of near-infrared (NIR) spectroscopy. Recently, many new algorithms have been proposed for the model transfer of spectra collected by the same types of instruments under different situations. However, in a practical scenario, we need to deal with model transfer between different types of instruments. To expand model applicability, we must develop a method that could transfer spectra acquired from different types of NIR spectrometers with different wavenumbers or absorbance. Therefore, in our study, we propose a new methodology based on improved principal component analysis (IPCA) for calibration transfer between different types of spectrometers. We adopted three datasets for method evaluation, including public pharmaceutical tablets (dataset 1), corn data (dataset 2), and the spectra of eight batches of samples acquired from the plasma ethanol precipitation process collected by FT-NIR and MicroNIR spectrometers (dataset 3). In the calibration transfer for public datasets, IPCA displayed comparable results with the classical calibration transfer method using piecewise direct standardization (PDS), indicating its obvious ability to transfer spectra collected from the same types of instruments. However, in the calibration transfer for dataset 3, our proposed IPCA method achieved a successful bi-transfer between the spectra acquired from the benchtop and micro-instruments with/without wavelength region selection. Furthermore, our proposed method enabled improvements in prediction ability rather than the degradation of the models built with original micro spectra. Therefore, our proposed method has no limitations on the spectrum for model transfer between different types of NIR instruments, thus allowing a wide application range, which could provide a supporting technology for the practical application of NIR spectroscopy.
鉴于模型建立的劳动密集性质,模型转移已成为近红外(NIR)光谱研究中的一个重要课题。最近,已经提出了许多新的算法来实现相同类型仪器在不同情况下采集的光谱的模型转移。然而,在实际情况下,我们需要处理不同类型仪器之间的模型转移。为了扩大模型的适用性,我们必须开发一种能够在不同类型的 NIR 光谱仪之间转移具有不同波数或吸光度的光谱的方法。因此,在我们的研究中,我们提出了一种基于改进主成分分析(IPCA)的新方法,用于不同类型光谱仪之间的校准转移。我们采用了三个数据集来评估方法,包括公共药用片剂(数据集 1)、玉米数据(数据集 2)和通过傅里叶变换近红外(FT-NIR)和 MicroNIR 光谱仪采集的来自血浆乙醇沉淀过程的八个批次样品的光谱(数据集 3)。在公共数据集的校准转移中,IPCA 与使用分段直接标准化(PDS)的经典校准转移方法的结果相当,表明其明显能够转移来自相同类型仪器采集的光谱。然而,在数据集 3 的校准转移中,我们提出的 IPCA 方法成功地在具有/不具有波长区域选择的台式和微型仪器之间进行了光谱的双向转移。此外,我们提出的方法能够提高预测能力,而不是降低原始微型光谱建立的模型的预测能力。因此,我们提出的方法对不同类型 NIR 仪器之间的光谱模型转移没有限制,从而具有广泛的应用范围,可以为近红外光谱技术的实际应用提供支持技术。