Suppr超能文献

基于人工智能的量子计算环境中数据学习和检索的低功耗电子相互作用多层 QCA 内容寻址存储单元。

Multi-Layered QCA Content-Addressable Memory Cell Using Low-Power Electronic Interaction for AI-Based Data Learning and Retrieval in Quantum Computing Environment.

机构信息

Department of Convergence Science, Kongju National University, Gongju 32588, Republic of Korea.

Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia.

出版信息

Sensors (Basel). 2022 Dec 20;23(1):19. doi: 10.3390/s23010019.

Abstract

In this study, we propose a quantum structure of an associative memory cell for effective data learning based on artificial intelligence. For effective learning of related data, content-based retrieval and storage rather than memory address is essential. A content-addressable memory (CAM), which is an efficient memory cell structure for this purpose, in a quantum computing environment, is designed based on quantum-dot cellular automata (QCA). A CAM cell is composed of a memory unit that stores information, a match unit that performs a search, and a structure, using an XOR gate or an XNOR gate in the match unit, that shows good performance. In this study, we designed an XNOR gate with a multilayer structure based on electron interactions and proposed a QCA-based CAM cell using it. The area and time efficiency are verified through a simulation using QCADesigner, and the quantum cost of the proposed XOR gate and CAM cell were reduced by at least 70% and 15%, respectively, when compared to the latest research. In addition, we physically proved the potential energy owing to the interaction between the electrons inside the QCA cell. We also proposed an additional CAM circuit targeting the reduction in energy dissipation that overcomes the best available designs. The simulation and calculation of power dissipation are performed by QCADesigner-E and it is confirmed that more than 27% is reduced.

摘要

在这项研究中,我们提出了一种基于人工智能的联想记忆细胞的量子结构,以实现有效的数据学习。为了有效地学习相关数据,基于内容的检索和存储比内存地址更为重要。为此,我们在量子计算环境中设计了基于量子点细胞自动机 (QCA) 的内容可寻址存储器 (CAM)。CAM 由存储信息的存储单元、执行搜索的匹配单元以及在匹配单元中使用异或门或与非门的结构组成,具有良好的性能。在这项研究中,我们基于电子相互作用设计了具有多层结构的异或门,并提出了一种基于 QCA 的 CAM 单元。通过使用 QCADesigner 进行模拟,验证了其面积和时间效率,与最新研究相比,所提出的异或门和 CAM 单元的量子成本分别降低了至少 70%和 15%。此外,我们还从物理上证明了 QCA 单元内部电子相互作用产生的势能。我们还提出了一种针对减少能耗的额外 CAM 电路,克服了现有最佳设计。通过 QCADesigner-E 进行功耗的模拟和计算,确认功耗降低了 27%以上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e0/9824378/f7d7716bb90a/sensors-23-00019-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验