Department of Supply Chain Management, International Hellenic University, 570 01 Thessaloniki, Greece.
Institute for Bio-Economy and Agri-Technology (IBO), Centre of Research and Technology-Hellas (CERTH), 6th km Charilaou-Thermi Rd., 570 01 Thessaloniki, Greece.
Sensors (Basel). 2022 Dec 20;23(1):21. doi: 10.3390/s23010021.
Knowledge-based synergistic automation is a potential intermediate option between the opposite extremes of manual and fully automated robotic labor in agriculture. Disruptive information and communication technologies (ICT) and sophisticated solutions for human-robot interaction (HRI) endow a skilled farmer with enhanced capabilities to perform agricultural tasks more efficiently and productively. This research aspires to apply systems engineering principles to assess the design of a conceptual human-robot synergistic platform enabled by a sensor-driven ICT sub-system. In particular, this paper firstly presents an overview of a use case, including a human-robot synergistic platform comprising a drone, a mobile platform, and wearable equipment. The technology framework constitutes a paradigm of human-centric worker-robot logistics synergy for high-value crops, which is applicable in operational environments of outdoor in-field harvesting and handling operations. Except for the physical sub-system, the ICT sub-system of the robotic framework consists of an extended sensor network for enabling data acquisition to extract the context (e.g., worker's status, environment awareness) and plan and schedule the robotic agents of the framework. Secondly, this research explicitly presents the underpinning Design Structure Matrix (DSM) that systematically captures the interrelations between the sensors in the platform and data/information signals for enabling synergistic operations. The employed Systems Engineering approach provides a comprehensible analysis of the baseline structure existing in the examined human-robot synergy platform. In particular, the applied DSM allows for understanding and synthesizing a sensor sub-system's architecture and enriching its efficacy by informing targeted interventions and reconfiguring the developed robotic solution modules depending on the required farming tasks at an orchard. Human-centric solutions for the agrarian sector demand careful study of the features that the particular agri-field possesses; thus, the insight DSM provides to system designers can turn out to be useful in the investigation of other similar data-driven applications.
基于知识的协同自动化是农业中手动和全自动化机器人劳动之间的潜在中间选择。颠覆性的信息和通信技术(ICT)以及先进的人机交互(HRI)解决方案赋予熟练农民增强的能力,以更高效、更有成效地执行农业任务。本研究旨在应用系统工程原理来评估由传感器驱动的 ICT 子系统提供支持的概念人机协同平台的设计。特别是,本文首先概述了一个用例,包括一个由无人机、移动平台和可穿戴设备组成的人机协同平台。该技术框架构成了以人为中心的工人-机器人物流协同的范例,适用于户外田间收获和处理作业的操作环境。除了物理子系统外,机器人框架的 ICT 子系统还包括一个扩展的传感器网络,用于实现数据采集,以提取上下文(例如,工人的状态、环境感知)并规划和安排框架中的机器人代理。其次,本研究明确提出了基础设计结构矩阵(DSM),该矩阵系统地捕获了平台中的传感器与数据/信息信号之间的相互关系,以实现协同操作。所采用的系统工程方法提供了对所研究的人机协同平台中现有基准结构的可理解分析。特别是,应用的 DSM 允许理解和综合传感器子系统的架构,并通过告知针对特定干预措施和根据果园的需要重新配置开发的机器人解决方案模块来丰富其功效。面向农业领域的以人为本的解决方案需要仔细研究特定农业领域所具有的特征;因此,DSM 为系统设计人员提供的见解对于调查其他类似的数据驱动应用可能会很有用。