Unidad Académica de Ingeniería I, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico.
Unidad Académica de Ciencia y Tecnología de la Luz y la Materia, Universidad Autónoma de Zacatecas, Zacatecas 98047, Mexico.
Sensors (Basel). 2023 Jan 1;23(1):460. doi: 10.3390/s23010460.
In precision beekeeping, the automatic recognition of colony states to assess the health status of bee colonies with dedicated hardware is an important challenge for researchers, and the use of machine learning (ML) models to predict acoustic patterns has increased attention. In this work, five classification ML algorithms were compared to find a model with the best performance and the lowest computational cost for identifying colony states by analyzing acoustic patterns. Several metrics were computed to evaluate the performance of the models, and the code execution time was measured (in the training and testing process) as a CPU usage measure. Furthermore, a simple and efficient methodology for dataset prepossessing is presented; this allows the possibility to train and test the models in very short times on limited resources hardware, such as the Raspberry Pi computer, moreover, achieving a high classification performance (above 95%) in all the ML models. The aim is to reduce power consumption and improves the battery life on a monitor system for automatic recognition of bee colony states.
在精准养蜂中,使用专用硬件自动识别蜂群状态以评估蜂群的健康状况是研究人员面临的一项重要挑战,而使用机器学习 (ML) 模型来预测声学模式的方法受到了越来越多的关注。在这项工作中,比较了五种分类 ML 算法,以找到一种具有最佳性能和最低计算成本的模型,通过分析声学模式来识别蜂群状态。计算了多个指标来评估模型的性能,并测量了代码执行时间(在训练和测试过程中)作为 CPU 使用情况的度量。此外,还提出了一种简单有效的数据集预处理方法;这使得在 Raspberry Pi 计算机等有限资源硬件上进行模型训练和测试成为可能,而且可以在所有 ML 模型中实现超过 95%的高分类性能。其目的是减少监控系统自动识别蜜蜂群状态时的功耗并延长电池寿命。