Suppr超能文献

深度学习在计算机视觉中的应用综述

Deep Learning for Computer Vision: A Brief Review.

机构信息

Department of Informatics, Technological Educational Institute of Athens, 12210 Athens, Greece.

National Technical University of Athens, 15780 Athens, Greece.

出版信息

Comput Intell Neurosci. 2018 Feb 1;2018:7068349. doi: 10.1155/2018/7068349. eCollection 2018.

Abstract

Over the last years deep learning methods have been shown to outperform previous state-of-the-art machine learning techniques in several fields, with computer vision being one of the most prominent cases. This review paper provides a brief overview of some of the most significant deep learning schemes used in computer vision problems, that is, Convolutional Neural Networks, Deep Boltzmann Machines and Deep Belief Networks, and Stacked Denoising Autoencoders. A brief account of their history, structure, advantages, and limitations is given, followed by a description of their applications in various computer vision tasks, such as object detection, face recognition, action and activity recognition, and human pose estimation. Finally, a brief overview is given of future directions in designing deep learning schemes for computer vision problems and the challenges involved therein.

摘要

在过去几年中,深度学习方法在多个领域中已经被证明优于之前的最先进的机器学习技术,计算机视觉是其中最突出的案例之一。本文简要概述了一些在计算机视觉问题中使用的最重要的深度学习方案,即卷积神经网络、深度玻尔兹曼机和深度置信网络以及堆叠去噪自编码器。简要介绍了它们的历史、结构、优点和局限性,然后描述了它们在各种计算机视觉任务中的应用,如目标检测、人脸识别、动作和活动识别以及人体姿态估计。最后,简要概述了为计算机视觉问题设计深度学习方案的未来方向及其所涉及的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2d1/5816885/3db0ce520eb6/CIN2018-7068349.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验