文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习在计算机视觉中的应用综述

Deep Learning for Computer Vision: A Brief Review.

机构信息

Department of Informatics, Technological Educational Institute of Athens, 12210 Athens, Greece.

National Technical University of Athens, 15780 Athens, Greece.

出版信息

Comput Intell Neurosci. 2018 Feb 1;2018:7068349. doi: 10.1155/2018/7068349. eCollection 2018.


DOI:10.1155/2018/7068349
PMID:29487619
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5816885/
Abstract

Over the last years deep learning methods have been shown to outperform previous state-of-the-art machine learning techniques in several fields, with computer vision being one of the most prominent cases. This review paper provides a brief overview of some of the most significant deep learning schemes used in computer vision problems, that is, Convolutional Neural Networks, Deep Boltzmann Machines and Deep Belief Networks, and Stacked Denoising Autoencoders. A brief account of their history, structure, advantages, and limitations is given, followed by a description of their applications in various computer vision tasks, such as object detection, face recognition, action and activity recognition, and human pose estimation. Finally, a brief overview is given of future directions in designing deep learning schemes for computer vision problems and the challenges involved therein.

摘要

在过去几年中,深度学习方法在多个领域中已经被证明优于之前的最先进的机器学习技术,计算机视觉是其中最突出的案例之一。本文简要概述了一些在计算机视觉问题中使用的最重要的深度学习方案,即卷积神经网络、深度玻尔兹曼机和深度置信网络以及堆叠去噪自编码器。简要介绍了它们的历史、结构、优点和局限性,然后描述了它们在各种计算机视觉任务中的应用,如目标检测、人脸识别、动作和活动识别以及人体姿态估计。最后,简要概述了为计算机视觉问题设计深度学习方案的未来方向及其所涉及的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2d1/5816885/f4ce41a3086f/CIN2018-7068349.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2d1/5816885/3db0ce520eb6/CIN2018-7068349.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2d1/5816885/80371d6948b0/CIN2018-7068349.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2d1/5816885/92b2d06728ed/CIN2018-7068349.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2d1/5816885/f4ce41a3086f/CIN2018-7068349.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2d1/5816885/3db0ce520eb6/CIN2018-7068349.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2d1/5816885/80371d6948b0/CIN2018-7068349.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2d1/5816885/92b2d06728ed/CIN2018-7068349.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2d1/5816885/f4ce41a3086f/CIN2018-7068349.004.jpg

相似文献

[1]
Deep Learning for Computer Vision: A Brief Review.

Comput Intell Neurosci. 2018-2-1

[2]
Deep Learning: The Good, the Bad, and the Ugly.

Annu Rev Vis Sci. 2019-8-8

[3]
A Comprehensive Survey on Graph Neural Networks.

IEEE Trans Neural Netw Learn Syst. 2021-1

[4]
An Overview of Machine Learning within Embedded and Mobile Devices-Optimizations and Applications.

Sensors (Basel). 2021-6-28

[5]
Deep Learning in Microscopy Image Analysis: A Survey.

IEEE Trans Neural Netw Learn Syst. 2017-11-22

[6]
Deep learning-Using machine learning to study biological vision.

J Vis. 2018-12-3

[7]
A novel biomedical image indexing and retrieval system via deep preference learning.

Comput Methods Programs Biomed. 2018-2-6

[8]
Deep learning-a first meta-survey of selected reviews across scientific disciplines, their commonalities, challenges and research impact.

PeerJ Comput Sci. 2021-11-17

[9]
Deep neural network models for computational histopathology: A survey.

Med Image Anal. 2021-1

[10]
Application of deep learning in genomics.

Sci China Life Sci. 2020-12

引用本文的文献

[1]
Does advancement in marker-less pose-estimation mean more quality research? A systematic review.

Front Behav Neurosci. 2025-8-22

[2]
Visualizing nexus of porous architecture and reactive transport in heterogeneous catalysis by deep learning computer vision and transfer learning.

Nat Commun. 2025-8-29

[3]
Hybrid quantum-classical-quantum convolutional neural networks.

Sci Rep. 2025-8-28

[4]
Docklessness, aesthetic governance, and the urban 'micromobility mess'.

Urban Stud. 2025-2-25

[5]
Federated Learning for Human Pose Estimation on Non-IID Data via Gradient Coordination.

Sensors (Basel). 2025-7-12

[6]
Cohort protocol: risk assessment of maternal inflammation and early brain development in infants and young children based on multi-source data modeling.

Front Public Health. 2025-7-14

[7]
Replicating associative learning of rodents with a neuromorphic robot in an open-field arena.

Front Neurosci. 2025-6-25

[8]
Efficient attention vision transformers for monocular depth estimation on resource-limited hardware.

Sci Rep. 2025-7-5

[9]
Fish species identification on low resolution-a study with enhanced super-resolution generative adversarial network (ESRGAN), YOLO and VGG-16.

PeerJ Comput Sci. 2025-4-30

[10]
Artificial Intelligence Approach in Hip Prosthesis Identification and Addressing Radiographic Outcome Measures.

Arthroplast Today. 2025-6-3

本文引用的文献

[1]
A Benchmark Dataset and Saliency-Guided Stacked Autoencoders for Video-Based Salient Object Detection.

IEEE Trans Image Process. 2017-10-12

[2]
S-CNN: Subcategory-Aware Convolutional Networks for Object Detection.

IEEE Trans Pattern Anal Mach Intell. 2018-10

[3]
DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection.

IEEE Trans Pattern Anal Mach Intell. 2017-7

[4]
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

IEEE Trans Pattern Anal Mach Intell. 2016-6-6

[5]
Fully Convolutional Networks for Semantic Segmentation.

IEEE Trans Pattern Anal Mach Intell. 2016-5-24

[6]
A Mathematical Motivation for Complex-Valued Convolutional Networks.

Neural Comput. 2016-5

[7]
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.

IEEE Trans Pattern Anal Mach Intell. 2015-9

[8]
Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data.

IEEE Trans Pattern Anal Mach Intell. 2013-8

[9]
Representation learning: a review and new perspectives.

IEEE Trans Pattern Anal Mach Intell. 2013-8

[10]
Enhanced gradient for training restricted Boltzmann machines.

Neural Comput. 2012-11-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索