Unidad Académica de Ingeniería, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico.
Unidad Académica de Ciencia y Tecnología de la Luz y la Materia, Universidad Autónoma de Zacatecas, Campus es Parque de Ciencia y Tecnología QUANTUM Cto., Zacatecas 98160, Mexico.
Sensors (Basel). 2024 Oct 2;24(19):6384. doi: 10.3390/s24196384.
Recent research has demonstrated the effectiveness of convolutional neural networks (CNN) in assessing the health status of bee colonies by classifying acoustic patterns. However, developing a monitoring system using CNNs compared to conventional machine learning models can result in higher computation costs, greater energy demand, and longer inference times. This study examines the potential of CNN architectures in developing a monitoring system based on constrained hardware. The experimentation involved testing ten CNN architectures from the PyTorch and Torchvision libraries on single-board computers: an Nvidia Jetson Nano (NJN), a Raspberry Pi 5 (RPi5), and an Orange Pi 5 (OPi5). The CNN architectures were trained using four datasets containing spectrograms of acoustic samples of different durations (30, 10, 5, or 1 s) to analyze their impact on performance. The hyperparameter search was conducted using the Optuna framework, and the CNN models were validated using k-fold cross-validation. The inference time and power consumption were measured to compare the performance of the CNN models and the SBCs. The aim is to provide a basis for developing a monitoring system for precision applications in apiculture based on constrained devices and CNNs.
最近的研究表明,卷积神经网络(CNN)通过对声音模式进行分类,可有效地评估蜜蜂群体的健康状况。然而,与传统的机器学习模型相比,使用 CNN 开发监控系统可能会导致更高的计算成本、更大的能源需求和更长的推断时间。本研究探讨了基于受限硬件开发监控系统的 CNN 架构的潜力。实验涉及在单板计算机上测试来自 PyTorch 和 Torchvision 库的十个 CNN 架构:Nvidia Jetson Nano(NJN)、Raspberry Pi 5(RPi5)和 Orange Pi 5(OPi5)。使用包含不同时长(30、10、5 或 1 秒)的声学样本声谱图的四个数据集对 CNN 架构进行训练,以分析它们对性能的影响。使用 Optuna 框架进行超参数搜索,并使用 k 折交叉验证对 CNN 模型进行验证。测量推断时间和功耗,以比较 CNN 模型和 SBC 的性能。目的是为基于受限设备和 CNN 的精准农业监控系统的开发提供基础。