Suppr超能文献

算法公平性研究的研究议程:跨学科研究的司法获取经验教训。

Research agenda for algorithmic fairness studies: Access to justice lessons for interdisciplinary research.

作者信息

Kontiainen Laura, Koulu Riikka, Sankari Suvi

机构信息

Faculty of Law, Helsinki Institute for Social Sciences and Humanities, University of Helsinki, Helsinki, Finland.

Faculty of Law, University of Helsinki Legal Tech Lab, Helsinki, Finland.

出版信息

Front Artif Intell. 2022 Dec 21;5:882134. doi: 10.3389/frai.2022.882134. eCollection 2022.

Abstract

Access to justice is one of the fundamental legitimating principles underlying all modern Western legal systems, yet its role in critical algorithm studies remains underdeveloped. In historical and methodological terms, the access to justice movement showcased multi- and interdisciplinary research on legal phenomena. We argue that interdisciplinary research on AI ethics and regulation, datafication of society, and algorithmic governance could benefit from adopting access to justice as a vantage point for bridging the different approaches in the context of administering justice. To this end, we explore technological, legal, and societal intersections to demonstrate how law, social sciences, and algorithm studies could benefit from a historically more informed and holistic approach facilitating more "cost-effective" interdisciplinary research collaboration. Such approach could assist the substantive study of algorithmic fairness to contribute actionable systemic solutions on what we perceive as systemic challenges. We propose utilizing access to justice as a boundary object for interdisciplinary dialogue over algorithmic fairness while respecting the epistemic diversity of disciplines.

摘要

司法正义是所有现代西方法律体系的基本正当性原则之一,但其在关键算法研究中的作用仍未得到充分发展。从历史和方法论的角度来看,司法正义运动展示了对法律现象的多学科和跨学科研究。我们认为,关于人工智能伦理与监管、社会数据化以及算法治理的跨学科研究,可以从将司法正义作为一个有利视角中受益,以便在司法管理背景下弥合不同的研究方法。为此,我们探索技术、法律和社会的交叉点,以展示法律、社会科学和算法研究如何能够从一种历史上更具见识且全面的方法中受益,这种方法有助于开展更“具有成本效益”的跨学科研究合作。这样的方法可以协助对算法公平性进行实质性研究,从而为我们所认为的系统性挑战提供可操作的系统性解决方案。我们提议将司法正义用作关于算法公平性的跨学科对话的边界对象,同时尊重各学科的认知多样性。

相似文献

6
Perception of fairness in algorithmic decisions: Future developers' perspective.算法决策中的公平感:未来开发者的视角。
Patterns (N Y). 2021 Nov 3;3(1):100380. doi: 10.1016/j.patter.2021.100380. eCollection 2022 Jan 14.
8
The integration and implications of artificial intelligence in forensic science.人工智能在法医学中的整合与影响。
Forensic Sci Med Pathol. 2024 Sep;20(3):1103-1105. doi: 10.1007/s12024-023-00772-6. Epub 2024 Jan 4.
9
Data justice and data solidarity.数据正义与数据团结。
Patterns (N Y). 2022 Mar 11;3(3):100427. doi: 10.1016/j.patter.2021.100427.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验