School of Information Science and Engineering Department, Shandong University, 72 Binghai Road, Jimo, Qingdao, Shandong, People's Republic of China.
Shandong Youth University of Political Science, No.31699 Jing Shi East Road, Li Xia District, Jinan, Shandong, People's Republic of China.
Phys Med Biol. 2023 Jan 23;68(3). doi: 10.1088/1361-6560/acb19a.
It is a huge challenge for multi-organs segmentation in various medical images based on a consistent algorithm with the development of deep learning methods. We therefore develop a deep learning method based on cross-convolutional transformer for these automated- segmentation to obtain better generalization and accuracy.We propose a cross-convolutional transformer network (CFormer) to solve the segmentation problem. Specifically, we first redesign a novel cross-convolutional self-attention mechanism in terms of the algorithm to integrate local and global contexts and model long-distance and short-distance dependencies to enhance the semantic feature understanding of images. Then multi-scale feature edge fusion module is proposed to combine the image edge features, which effectively form multi-scale feature streams and establish reliable relational connections in the global context. Finally, we use three different modalities, imaging three different anatomical regions to train and test multi organs and evaluate segmentation performance.We use the evaluation metrics of Dice similarity coefficient (DSC) and 95% Hausdorff distance (HD95) for each dataset. Experiments showed the average DSC of 83.22% and HD95 of 17.55 mm on the Synapse dataset (CT images of abdominal multi-organ), the average DSC of 91.42% and HD95 of 1.06 mm on the ACDC dataset (MRI of cardiac substructures) and the average DSC of 86.78% and HD95 of 16.85 mm on the ISIC 2017 dataset (skin cancer images). In each dataset, our proposed method consistently outperforms the compared networks.The proposed deep learning network provides a generalized and accurate solution method for multi-organ segmentation in the three different datasets. It has the potential to be applied to a variety of medical datasets for structural segmentation.
基于深度学习方法的发展,在各种医学图像中使用一致的算法进行多器官分割是一项巨大的挑战。因此,我们开发了一种基于交叉卷积变压器的深度学习方法,用于这些自动化分割,以获得更好的泛化能力和准确性。我们提出了一种交叉卷积变压器网络(CFormer)来解决分割问题。具体来说,我们首先重新设计了一种新颖的交叉卷积自注意力机制,从算法上整合局部和全局上下文,建模长距离和短距离依赖关系,增强图像的语义特征理解。然后提出了多尺度特征边缘融合模块,用于融合图像边缘特征,有效地形成多尺度特征流,并在全局上下文中建立可靠的关系连接。最后,我们使用三种不同的模态,对三个不同的解剖区域进行成像,来训练和测试多器官,并评估分割性能。我们使用 Dice 相似系数(DSC)和 95%Hausdorff 距离(HD95)对每个数据集进行评估。实验结果表明,在 Synapse 数据集(腹部多器官 CT 图像)上的平均 DSC 为 83.22%,HD95 为 17.55mm,在 ACDC 数据集(心脏亚结构 MRI)上的平均 DSC 为 91.42%,HD95 为 1.06mm,在 ISIC 2017 数据集(皮肤癌图像)上的平均 DSC 为 86.78%,HD95 为 16.85mm。在每个数据集上,我们提出的方法都优于比较网络。所提出的深度学习网络为三个不同数据集的多器官分割提供了一种通用且准确的解决方案方法。它有可能应用于各种医学数据集进行结构分割。