Hamza Tasnim, Chalkou Konstantina, Pellegrini Fabio, Kuhle Jens, Benkert Pascal, Lorscheider Johannes, Zecca Chiara, Iglesias-Urrutia Cynthia P, Manca Andrea, Furukawa Toshi A, Cipriani Andrea, Salanti Georgia
Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.
Graduate School for Health Sciences, University of Bern, Bern, Switzerland.
Res Synth Methods. 2023 Mar;14(2):283-300. doi: 10.1002/jrsm.1619. Epub 2023 Feb 22.
In network meta-analysis (NMA), we synthesize all relevant evidence about health outcomes with competing treatments. The evidence may come from randomized clinical trials (RCT) or non-randomized studies (NRS) as individual participant data (IPD) or as aggregate data (AD). We present a suite of Bayesian NMA and network meta-regression (NMR) models allowing for cross-design and cross-format synthesis. The models integrate a three-level hierarchical model for synthesizing IPD and AD into four approaches. The four approaches account for differences in the design and risk of bias (RoB) in the RCT and NRS evidence. These four approaches variously ignoring differences in RoB, using NRS to construct penalized treatment effect priors and bias-adjustment models that control the contribution of information from high RoB studies in two different ways. We illustrate the methods in a network of three pharmacological interventions and placebo for patients with relapsing-remitting multiple sclerosis. The estimated relative treatment effects do not change much when we accounted for differences in design and RoB. Conducting network meta-regression showed that intervention efficacy decreases with increasing participant age. We also re-analysed a network of 431 RCT comparing 21 antidepressants, and we did not observe material changes in intervention efficacy when adjusting for studies' high RoB. We re-analysed both case studies accounting for different study RoB. In summary, the described suite of NMA/NMR models enables the inclusion of all relevant evidence while incorporating information on the within-study bias in both observational and experimental data and enabling estimation of individualized treatment effects through the inclusion of participant characteristics.
在网络荟萃分析(NMA)中,我们综合了关于相互竞争治疗方法的所有健康结局相关证据。这些证据可能来自随机临床试验(RCT)或非随机研究(NRS),以个体参与者数据(IPD)或汇总数据(AD)的形式呈现。我们提出了一套贝叶斯NMA和网络荟萃回归(NMR)模型,允许进行跨设计和跨格式的综合分析。这些模型将用于综合IPD和AD的三级层次模型整合为四种方法。这四种方法考虑了RCT和NRS证据在设计和偏倚风险(RoB)方面的差异。这四种方法以不同方式忽略RoB差异,利用NRS构建惩罚性治疗效果先验和偏倚调整模型,以两种不同方式控制来自高RoB研究的信息贡献。我们在复发缓解型多发性硬化症患者的三种药物干预和安慰剂网络中对这些方法进行了说明。当我们考虑设计和RoB差异时,估计的相对治疗效果变化不大。进行网络荟萃回归分析表明,干预效果随着参与者年龄的增加而降低。我们还重新分析了一个比较21种抗抑郁药的431项RCT网络,在调整研究的高RoB时,我们没有观察到干预效果的实质性变化。我们对这两个案例研究都进行了重新分析,考虑了不同的研究RoB。总之,所描述的NMA/NMR模型套件能够纳入所有相关证据,同时纳入观察性和实验性数据中研究内偏倚的信息,并通过纳入参与者特征来估计个体化治疗效果。