Suppr超能文献

调整网络荟萃分析中抗抑郁药物试验的报告偏倚。

Adjustment for reporting bias in network meta-analysis of antidepressant trials.

机构信息

Centre Cochrane Français, Paris, France.

出版信息

BMC Med Res Methodol. 2012 Sep 27;12:150. doi: 10.1186/1471-2288-12-150.

Abstract

BACKGROUND

Network meta-analysis (NMA), a generalization of conventional MA, allows for assessing the relative effectiveness of multiple interventions. Reporting bias is a major threat to the validity of MA and NMA. Numerous methods are available to assess the robustness of MA results to reporting bias. We aimed to extend such methods to NMA.

METHODS

We introduced 2 adjustment models for Bayesian NMA. First, we extended a meta-regression model that allows the effect size to depend on its standard error. Second, we used a selection model that estimates the propensity of trial results being published and in which trials with lower propensity are weighted up in the NMA model. Both models rely on the assumption that biases are exchangeable across the network. We applied the models to 2 networks of placebo-controlled trials of 12 antidepressants, with 74 trials in the US Food and Drug Administration (FDA) database but only 51 with published results. NMA and adjustment models were used to estimate the effects of the 12 drugs relative to placebo, the 66 effect sizes for all possible pair-wise comparisons between drugs, probabilities of being the best drug and ranking of drugs. We compared the results from the 2 adjustment models applied to published data and NMAs of published data and NMAs of FDA data, considered as representing the totality of the data.

RESULTS

Both adjustment models showed reduced estimated effects for the 12 drugs relative to the placebo as compared with NMA of published data. Pair-wise effect sizes between drugs, probabilities of being the best drug and ranking of drugs were modified. Estimated drug effects relative to the placebo from both adjustment models were corrected (i.e., similar to those from NMA of FDA data) for some drugs but not others, which resulted in differences in pair-wise effect sizes between drugs and ranking.

CONCLUSIONS

In this case study, adjustment models showed that NMA of published data was not robust to reporting bias and provided estimates closer to that of NMA of FDA data, although not optimal. The validity of such methods depends on the number of trials in the network and the assumption that conventional MAs in the network share a common mean bias mechanism.

摘要

背景

网络荟萃分析(NMA)是常规荟萃分析的推广,可用于评估多种干预措施的相对有效性。发表偏倚是荟萃分析和 NMA 有效性的主要威胁。有许多方法可用于评估荟萃分析结果对发表偏倚的稳健性。我们旨在将这些方法扩展到 NMA。

方法

我们为贝叶斯 NMA 引入了 2 种调整模型。首先,我们扩展了一个元回归模型,允许效应大小取决于其标准误差。其次,我们使用了一种选择模型,该模型估计试验结果发表的倾向,并且在 NMA 模型中,倾向较低的试验权重较高。这两种模型都依赖于偏倚在网络中是可交换的假设。我们将模型应用于 2 个安慰剂对照的抗抑郁药网络,其中美国食品和药物管理局(FDA)数据库中有 74 个试验,但只有 51 个有发表结果。NMA 和调整模型用于估计 12 种药物相对于安慰剂的效果、所有可能药物间比较的 66 个效应大小、成为最佳药物的概率和药物排名。我们比较了应用于发表数据的 2 种调整模型的结果和发表数据的 NMA 以及 FDA 数据的 NMA,这些数据被认为代表了所有数据。

结果

与发表数据的 NMA 相比,这两种调整模型都显示 12 种药物相对于安慰剂的估计效果降低。药物间的成对效应大小、成为最佳药物的概率和药物排名都发生了变化。这两种调整模型估计的药物相对于安慰剂的效果都得到了校正(即与 FDA 数据的 NMA 相似),但对于某些药物而非其他药物,这导致了药物间的成对效应大小和排名的差异。

结论

在这项案例研究中,调整模型表明,发表数据的 NMA 对发表偏倚不稳健,并且提供的估计值更接近 FDA 数据的 NMA,但并不理想。这些方法的有效性取决于网络中的试验数量以及网络中常规 MA 共享共同的平均偏倚机制的假设。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/965f/3537713/3285883cb528/1471-2288-12-150-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验