Suppr超能文献

一种新型的活性转座子通过改变翻译速度产生等位基因变异,从而影响蛋白质丰度。

A novel active transposon creates allelic variation through altered translation rate to influence protein abundance.

机构信息

National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.

Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences/Xinjiang Key Laboratory of Crop Biotechnology/Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China.

出版信息

Nucleic Acids Res. 2023 Jan 25;51(2):595-609. doi: 10.1093/nar/gkac1195.

Abstract

Protein translation is tightly and precisely controlled by multiple mechanisms including upstream open reading frames (uORFs), but the origins of uORFs and their role in maize are largely unexplored. In this study, an active transposition event was identified during the propagation of maize inbred line B73. The transposon, which was named BTA for 'B73 active transposable element hAT', creates a novel dosage-dependent hypomorphic allele of the hexose transporter gene ZmSWEET4c through insertion within the coding sequence in the first exon, and results in reduced kernel size. The BTA insertion does not affect transcript abundance but reduces protein abundance of ZmSWEET4c, probably through the introduction of a uORF. Furthermore, the introduction of BTA sequence in the exon of other genes can regulate translation efficiency without affecting their mRNA levels. A transposon capture assay revealed 79 novel insertions for BTA and BTA-like elements. These insertion sites have typical euchromatin features, including low levels of DNA methylation and high levels of H3K27ac. A putative autonomous element that mobilizes BTA and BTA-like elements was identified. Together, our results suggest a transposon-based origin of uORFs and document a new role for transposable elements to influence protein abundance and phenotypic diversity by affecting the translation rate.

摘要

蛋白质翻译受到多种机制的严格和精确控制,包括上游开放阅读框 (uORFs),但 uORFs 的起源及其在玉米中的作用在很大程度上尚未得到探索。在这项研究中,在玉米自交系 B73 的繁殖过程中鉴定到一个活跃的转座事件。该转座子被命名为 BTA,代表“B73 活性转座元件 hAT”,通过插入第一个外显子的编码序列,创建了六碳糖转运蛋白基因 ZmSWEET4c 的新型剂量依赖的弱等位基因,导致核仁大小减小。BTA 插入不影响转录物丰度,但通过引入 uORF 降低 ZmSWEET4c 的蛋白质丰度。此外,BTA 序列在其他基因的外显子中的引入可以调节翻译效率,而不影响它们的 mRNA 水平。转座子捕获分析揭示了 BTA 和 BTA 样元件的 79 个新插入。这些插入位点具有典型的常染色质特征,包括低水平的 DNA 甲基化和高水平的 H3K27ac。鉴定到一种能够动员 BTA 和 BTA 样元件的自主元件。总之,我们的结果表明 uORFs 的起源基于转座子,并记录了转座元件通过影响翻译速度来影响蛋白质丰度和表型多样性的新作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a577/9881132/48ec930ec3ac/gkac1195fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验