Suppr超能文献

基于表格搜索的同相K分布参数估计器用于超声组织表征的研究

A Study on a Parameter Estimator for the Homodyned K Distribution Based on Table Search for Ultrasound Tissue Characterization.

作者信息

Liu Yang, He Bingbing, Zhang Yufeng, Lang Xun, Yao Ruihan, Pan Lingrui

机构信息

Department of Electronic Engineering, Information School, Yunnan University, Kunming, Yunnan, China.

Department of Electronic Engineering, Information School, Yunnan University, Kunming, Yunnan, China.

出版信息

Ultrasound Med Biol. 2023 Apr;49(4):970-981. doi: 10.1016/j.ultrasmedbio.2022.11.019. Epub 2023 Jan 9.

Abstract

OBJECTIVE

The homodyned K (HK) distribution is considered to be the most suitable distribution in the context of tissue characterization; therefore, the search for a rapid and reliable parameter estimator for HK distribution is important.

METHODS

We propose a novel parameter estimator based on a table search (TS) for HK parameter estimates. The TS estimator can inherit the strength of conventional estimators by integrating various features and taking advantage of the TS method in a rapid and easy operation. Performance of the proposed TS estimator was evaluated and compared with that of XU (the estimation method based on X and U statistics) and artificial neural network (ANN) estimators.

DISCUSSION

The simulation results revealed that the TS estimator is superior to the XU and ANN estimators in terms of normalized standard deviations and relative root mean squared errors of parameter estimation, and is faster. Clinical experiments found that the area under the receiver operating curve for breast lesion classification using the parameters estimated by the TS estimator could reach 0.871.

CONCLUSION

The proposed TS estimator is more accurate, reliable and faster than the state-of-the-art XU and ANN estimators and has great potential for ultrasound tissue characterization based on the HK distribution.

摘要

目的

在组织表征的背景下,零差K(HK)分布被认为是最合适的分布;因此,寻找一种快速且可靠的HK分布参数估计器很重要。

方法

我们提出了一种基于表格搜索(TS)的新型参数估计器用于HK参数估计。TS估计器可以通过整合各种特征并利用TS方法,以快速且简便的操作继承传统估计器的优势。对所提出的TS估计器的性能进行了评估,并与XU(基于X和U统计量的估计方法)和人工神经网络(ANN)估计器的性能进行了比较。

讨论

模拟结果表明,TS估计器在参数估计的归一化标准差和相对均方根误差方面优于XU和ANN估计器,并且速度更快。临床实验发现,使用TS估计器估计的参数进行乳腺病变分类时,接收器操作曲线下面积可达0.871。

结论

所提出的TS估计器比目前最先进的XU和ANN估计器更准确、可靠且速度更快,在基于HK分布的超声组织表征方面具有巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验