Suppr超能文献

基于人工神经网络的超声组织特征化同频 K 分布参数估计。

Parameter estimation of the homodyned K distribution based on an artificial neural network for ultrasound tissue characterization.

机构信息

Department of Biomedical Engineering, Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China.

College of Biomedical Engineering, Capital Medical University, Beijing, China.

出版信息

Ultrasonics. 2021 Mar;111:106308. doi: 10.1016/j.ultras.2020.106308. Epub 2020 Dec 1.

Abstract

The homodyned K (HK) distribution allows a general description of ultrasound backscatter envelope statistics with specific physical meanings. In this study, we proposed a new artificial neural network (ANN) based parameter estimation method of the HK distribution. The proposed ANN estimator took advantages of ANNs in learning and function approximation and inherited the strengths of conventional estimators through extracting five feature parameters from backscatter envelope signals as the input of the ANN: the signal-to-noise ratio (SNR), skewness, kurtosis, as well as X- and U-statistics. Computer simulations and clinical data of hepatic steatosis were used for validations of the proposed ANN estimator. The ANN estimator was compared with the RSK (the level-curve method that uses SNR, skewness, and kurtosis based on the fractional moments of the envelope) and XU (the estimation method based on X- and U-statistics) estimators. Computer simulation results showed that the relative bias was best for the XU estimator, whilst the normalized standard deviation was overall best for the ANN estimator. The ANN estimator was almost one order of magnitude faster than the RSK and XU estimators. The ANN estimator also yielded comparable diagnostic performance to state-of-the-art HK estimators in the assessment of hepatic steatosis. The proposed ANN estimator has great potential in ultrasound tissue characterization based on the HK distribution.

摘要

自相关 K(HK)分布允许对超声背散射包络统计数据进行一般性描述,并具有特定的物理意义。在本研究中,我们提出了一种新的基于人工神经网络(ANN)的 HK 分布参数估计方法。所提出的 ANN 估计器利用了神经网络在学习和函数逼近方面的优势,并通过从背散射包络信号中提取五个特征参数作为 ANN 的输入,继承了传统估计器的优势:信噪比(SNR)、偏度、峰度以及 X 和 U 统计量。计算机模拟和肝脂肪变性的临床数据用于验证所提出的 ANN 估计器。将 ANN 估计器与 RSK(基于包络的分数矩的 SNR、偏度和峰度的水平曲线方法)和 XU(基于 X 和 U 统计量的估计方法)估计器进行了比较。计算机模拟结果表明,对于 XU 估计器,相对偏差最好,而对于 ANN 估计器,归一化标准差总体上最好。ANN 估计器的速度比 RSK 和 XU 估计器快一个数量级。在评估肝脂肪变性方面,ANN 估计器在超声组织特征化方面也具有与最先进的 HK 估计器相当的诊断性能。所提出的 ANN 估计器在基于 HK 分布的超声组织特征化方面具有很大的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验