Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China.
Ultrasonics. 2023 Jul;132:106987. doi: 10.1016/j.ultras.2023.106987. Epub 2023 Mar 20.
The homodyned-K (HK) distribution model is a generalized backscatter envelope statistical model for ultrasound tissue characterization, whose parameters are of physical meaning. To estimate the HK parameters is an inverse problem, and is quite complicated. Previously, we proposed an artificial neural network (ANN) estimator and an improved ANN (iANN) estimator for estimating the HK parameters, which are fast and flexible. However, a drawback of the conventional ANN and iANN estimators consists in that they use Monte Carlo simulations under known values of HK parameters to generate training samples, and thus the ANN and iANN models have to be re-trained when the size of the test sets (or of the envelope samples to be estimated) varies. In addition, conventional ultrasound HK imaging uses a sliding window technique, which is non-vectorized and does not support parallel computation, so HK image resolution is usually sacrificed to ensure a reasonable computation cost. To this end, we proposed a generalized ANN (gANN) estimator in this paper, which took the theoretical derivations of feature vectors for network training, and thus it is independent from the size of the test sets. Further, we proposed a parallelized HK imaging method that is based on the gANN estimator, which used a block-based parallel computation method, rather than the conventional sliding window technique. The gANN-based parallelized HK imaging method allowed a higher image resolution and a faster computation at the same time. Computer simulation experiments showed that the gANN estimator was generally comparable to the conventional ANN estimator in terms of HK parameter estimation performance. Clinical experiments of hepatic steatosis showed that the gANN-based parallelized HK imaging could be used to visually and quantitatively characterize hepatic steatosis, with similar performance to the conventional ANN-based HK imaging that used the sliding window technique, but the gANN-based parallelized HK imaging was over 3 times faster than the conventional ANN-based HK imaging. The parallelized computation method presented in this work can be easily extended to other quantitative ultrasound imaging applications.
同态化 K(HK)分布模型是一种用于超声组织特征描述的广义背散射包络统计模型,其参数具有物理意义。估计 HK 参数是一个反问题,非常复杂。之前,我们提出了一种人工神经网络(ANN)估计器和一种改进的 ANN(iANN)估计器来估计 HK 参数,它们快速灵活。然而,传统 ANN 和 iANN 估计器的一个缺点是,它们使用已知 HK 参数值下的蒙特卡罗模拟来生成训练样本,因此当测试集的大小(或要估计的包络样本)发生变化时,ANN 和 iANN 模型必须重新训练。此外,传统的超声 HK 成像使用滑动窗口技术,该技术是非矢量化的,不支持并行计算,因此为了确保合理的计算成本,通常会牺牲 HK 图像分辨率。为此,我们在本文中提出了一种广义 ANN(gANN)估计器,该估计器采用了网络训练的特征向量的理论推导,因此它独立于测试集的大小。此外,我们提出了一种基于 gANN 估计器的并行化 HK 成像方法,该方法使用基于块的并行计算方法,而不是传统的滑动窗口技术。基于 gANN 的并行化 HK 成像方法同时实现了更高的图像分辨率和更快的计算速度。计算机模拟实验表明,gANN 估计器在 HK 参数估计性能方面通常与传统 ANN 估计器相当。肝脂肪变性的临床实验表明,基于 gANN 的并行化 HK 成像可用于直观和定量地描述肝脂肪变性,其性能与使用滑动窗口技术的传统基于 ANN 的 HK 成像相似,但基于 gANN 的并行化 HK 成像速度比传统基于 ANN 的 HK 成像快 3 倍以上。本工作中提出的并行计算方法可以很容易地扩展到其他定量超声成像应用中。