Suppr超能文献

预测莱姆病病原体的时空种群模式。

Predicting spatio-temporal population patterns of , the Lyme disease pathogen.

作者信息

Tran Tam, Prusinski Melissa A, White Jennifer L, Falco Richard C, Kokas John, Vinci Vanessa, Gall Wayne K, Tober Keith J, Haight Jamie, Oliver JoAnne, Sporn Lee Ann, Meehan Lisa, Banker Elyse, Backenson P Bryon, Jensen Shane T, Brisson Dustin

机构信息

Biology Department University of Pennsylvania Philadelphia PA USA.

New York State Department of Health (NYSDOH) Bureau of Communicable Disease Control Albany NY USA.

出版信息

J Appl Ecol. 2022 Nov;59(11):2779-2789. doi: 10.1111/1365-2664.14274. Epub 2022 Sep 13.

Abstract

The causative bacterium of Lyme disease, , expanded from an undetected human pathogen into the etiologic agent of the most common vector-borne disease in the United States over the last several decades. Systematic field collections of the tick vector reveal increases in the geographic range and prevalence of ticks that coincided with increases in human Lyme disease incidence across New York State.We investigate the impact of environmental features on the population dynamics of . Analytical models developed using field collections of nearly 19,000 nymphal and spatially and temporally explicit environmental features accurately explained the variation in the nymphal infection prevalence of across space and time.Importantly, the model identified environmental features reflecting landscape ecology, vertebrate hosts, climatic metrics, climate anomalies and surveillance efforts that can be used to predict the biogeographical patterns of infected ticks into future years and in previously unsampled areas.Forecasting the distribution and prevalence of a pathogen at fine geographic scales offers a powerful strategy to mitigate a serious public health threat. . A decade of environmental and tick data was collected to create a model that accurately predicts the infection prevalence of over space and time. This predictive model can be extrapolated to create a high-resolution risk map of the Lyme disease pathogen for future years that offers an inexpensive approach to improve both ecological management and public health strategies to mitigate disease risk.

摘要

莱姆病的致病细菌,在过去几十年里,从一种未被发现的人类病原体发展成为美国最常见的媒介传播疾病的病原体。对蜱虫媒介进行的系统野外采集显示,蜱虫的地理分布范围和患病率有所增加,这与纽约州人类莱姆病发病率的上升相一致。我们研究环境特征对该细菌种群动态的影响。利用近19000只若虫的野外采集数据以及时空明确的环境特征建立的分析模型,准确地解释了该细菌若虫感染患病率在空间和时间上的变化。重要的是,该模型识别出了反映景观生态学、脊椎动物宿主、气候指标、气候异常和监测工作的环境特征,这些特征可用于预测未来几年以及以前未采样地区感染蜱虫的生物地理模式。在精细地理尺度上预测病原体的分布和患病率,为减轻严重的公共卫生威胁提供了一个有力的策略。收集了十年的环境和蜱虫数据,以建立一个能准确预测该细菌在空间和时间上感染患病率的模型。这个预测模型可以外推,以创建未来几年莱姆病病原体的高分辨率风险地图,这为改进生态管理和公共卫生策略以减轻疾病风险提供了一种低成本的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a460/9826398/67cfd5b8571f/JPE-59-2779-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验