Instituto de Neurobiología y Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico.
Facultad de Ingeniería, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, Mexico.
PLoS One. 2023 Jan 12;18(1):e0278388. doi: 10.1371/journal.pone.0278388. eCollection 2023.
Given the ever-increasing prevalence of type 2 diabetes and obesity, the pressure on global healthcare is expected to be colossal, especially in terms of blindness. Electroretinogram (ERG) has long been perceived as a first-use technique for diagnosing eye diseases, and some studies suggested its use for preventable risk factors of type 2 diabetes and thereby diabetic retinopathy (DR). Here, we show that in a non-evoked mode, ERG signals contain spontaneous oscillations that predict disease cases in rodent models of obesity and in people with overweight, obesity, and metabolic syndrome but not yet diabetes, using one single random forest-based model. Classification performance was both internally and externally validated, and correlation analysis showed that the spontaneous oscillations of the non-evoked ERG are altered before oscillatory potentials, which are the current gold-standard for early DR. Principal component and discriminant analysis suggested that the slow frequency (0.4-0.7 Hz) components are the main discriminators for our predictive model. In addition, we established that the optimal conditions to record these informative signals, are 5-minute duration recordings under daylight conditions, using any ERG sensors, including ones working with portative, non-mydriatic devices. Our study provides an early warning system with promising applications for prevention, monitoring and even the development of new therapies against type 2 diabetes.
鉴于 2 型糖尿病和肥胖症的发病率不断上升,预计全球医疗保健系统将面临巨大压力,尤其是在失明方面。视网膜电图 (ERG) 长期以来一直被认为是诊断眼病的首选技术,一些研究表明它可用于 2 型糖尿病和糖尿病性视网膜病变 (DR) 的可预防危险因素。在这里,我们展示了在非诱发模式下,ERG 信号中包含自发振荡,可使用基于单个随机森林的模型预测肥胖啮齿动物模型和超重、肥胖和代谢综合征但尚未患糖尿病的人群中的病例。对分类性能进行了内部和外部验证,相关分析表明,自发振荡的非诱发 ERG 在振荡电位之前发生改变,而后者是早期 DR 的当前金标准。主成分和判别分析表明,慢频率(0.4-0.7 Hz)分量是我们预测模型的主要判别因子。此外,我们还确定了记录这些信息性信号的最佳条件,即使用任何 ERG 传感器在白天条件下记录 5 分钟的时长,包括使用便携式、非散瞳设备工作的传感器。我们的研究提供了一个预警系统,具有在预防、监测甚至开发针对 2 型糖尿病的新疗法方面具有广阔的应用前景。