Stroke Unit, Neurology, Hospital Vall d'Hebron, Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
Department of Mathematics and Computer Science, University of Barcelona, Barcelona, Spain; Computer Vision Center, Bellaterra, Spain.
Comput Med Imaging Graph. 2023 Mar;104:102170. doi: 10.1016/j.compmedimag.2022.102170. Epub 2022 Dec 28.
Vascular tortuosity of supra-aortic vessels is widely considered one of the main reasons for failure and delays in endovascular treatment of large vessel occlusion in patients with acute ischemic stroke. Characterization of tortuosity is a challenging task due to the lack of objective, robust and effective analysis tools. We present a fully automatic method for arterial segmentation, vessel labelling and tortuosity feature extraction applied to the supra-aortic region. A sample of 566 computed tomography angiography scans from acute ischemic stroke patients (aged 74.8 ± 12.9, 51.0% females) were used for training, validation and testing of a segmentation module based on a U-Net architecture (162 cases) and a vessel labelling module powered by a graph U-Net (566 cases). Successively, 30 cases were processed for testing of a tortuosity feature extraction module. Measurements obtained through automatic processing were compared to manual annotations from two observers for a thorough validation of the method. The proposed feature extraction method presented similar performance to the inter-rater variability observed in the measurement of 33 geometrical and morphological features of the arterial anatomy in the supra-aortic region. This system will contribute to the development of more complex models to advance the treatment of stroke by adding immediate automation, objectivity, repeatability and robustness to the vascular tortuosity characterization of patients.
血管迂曲是导致急性缺血性脑卒中患者血管内治疗失败和延迟的主要原因之一。由于缺乏客观、稳健和有效的分析工具,因此对迂曲程度进行特征描述是一项具有挑战性的任务。我们提出了一种完全自动化的方法,用于对主动脉区域进行动脉分割、血管标记和迂曲特征提取。该方法使用了 566 例急性缺血性脑卒中患者的计算机断层血管造影扫描样本(年龄 74.8±12.9 岁,女性占 51.0%),用于训练、验证和测试基于 U-Net 架构的分割模块(162 例)和基于图 U-Net 的血管标记模块(566 例)。随后,对 30 例患者进行了迂曲特征提取模块的测试。通过自动处理获得的测量值与来自两名观察者的手动注释进行了比较,以对该方法进行全面验证。所提出的特征提取方法在测量主动脉区域动脉解剖的 33 个几何和形态特征方面的表现与观察者间的变异性相似。该系统将通过为患者的血管迂曲特征描述增加即时自动化、客观性、可重复性和稳健性,为更复杂的模型的开发做出贡献,从而推进卒中的治疗。