Suppr超能文献

推进用于亚利桑那州地下水抽取量估算的遥感和机器学习驱动框架:将地面沉降与地下水抽取联系起来。

Advancing remote sensing and machine learning-driven frameworks for groundwater withdrawal estimation in Arizona: Linking land subsidence to groundwater withdrawals.

作者信息

Majumdar Sayantan, Smith Ryan, Conway Brian D, Lakshmi Venkataraman

机构信息

Department of Civil and Environmental Engineering Colorado State University Fort Collins Colorado USA.

Arizona Department of Water Resources Phoenix Arizona USA.

出版信息

Hydrol Process. 2022 Nov;36(11):e14757. doi: 10.1002/hyp.14757. Epub 2022 Nov 14.

Abstract

Groundwater plays a crucial role in sustaining global food security but is being over-exploited in many basins of the world. Despite its importance and finite availability, local-scale monitoring of groundwater withdrawals required for sustainable water management practices is not carried out in most countries, including the United States. In this study, we combine publicly available datasets into a machine learning framework for estimating groundwater withdrawals over the state of Arizona. Here we include evapotranspiration, precipitation, crop coefficients, land use, annual discharge, well density, and watershed stress metrics for our predictions. We employ random forests to predict groundwater withdrawals from 2002 to 2020 at a 2 km spatial resolution using in situ groundwater withdrawal data available for Arizona Active Management Areas (AMA) and Irrigation Non-Expansion Areas (INA) from 2002 to 2009 for training and 2010-2020 for validating the model respectively. The results show high training ( ) and good testing ( ) scores with normalized mean absolute error (NMAE) ≈ 0.62 and normalized root mean square error (NRMSE) ≈ 2.34 for the AMA/INA region. Using this method, we spatially extrapolate the existing groundwater withdrawal estimates to the entire state and observe the co-occurrence of both groundwater withdrawals and land subsidence in South-Central and Southern Arizona. Our model predicts groundwater withdrawals in regions where production wells are present on agricultural lands and subsidence is observed from Interferometric Synthetic Aperture Radar (InSAR), but withdrawals are not monitored. By performing a comparative analysis over these regions using the predicted groundwater withdrawals and InSAR-based land subsidence estimates, we observe a varying degree of subsidence for similar volumes of withdrawals in different basins. The performance of our model on validation datasets and its favourable comparison with independent water use proxies such as InSAR demonstrate the effectiveness and extensibility of our combined remote sensing and machine learning-based approach.

摘要

地下水在维持全球粮食安全方面发挥着关键作用,但在世界许多流域正被过度开采。尽管其重要性和有限的可利用性,但包括美国在内的大多数国家并未对可持续水资源管理实践所需的地下水抽取进行局部尺度监测。在本研究中,我们将公开可用的数据集整合到一个机器学习框架中,以估算亚利桑那州的地下水抽取量。在这里,我们将蒸散量、降水量、作物系数、土地利用、年径流量、井密度和流域压力指标纳入预测。我们使用随机森林,以2公里的空间分辨率预测2002年至2020年的地下水抽取量,分别使用2002年至2009年亚利桑那州活跃管理区(AMA)和灌溉非扩展区(INA)的原位地下水抽取数据进行训练,并使用2010年至2020年的数据验证模型。结果表明,AMA/INA地区的训练得分较高( ),测试得分良好( ),归一化平均绝对误差(NMAE)≈0.62,归一化均方根误差(NRMSE)≈2.34。使用这种方法,我们将现有的地下水抽取估计值在空间上外推到整个州,并观察到亚利桑那州中南部和南部同时存在地下水抽取和地面沉降的情况。我们的模型预测了农业用地上存在生产井且通过干涉合成孔径雷达(InSAR)观测到沉降但未监测抽取量的地区的地下水抽取情况。通过使用预测的地下水抽取量和基于InSAR的地面沉降估计值对这些地区进行比较分析,我们观察到不同流域在抽取量相似的情况下沉降程度不同。我们的模型在验证数据集上的表现及其与InSAR等独立用水代理的良好比较,证明了我们基于遥感和机器学习的组合方法的有效性和可扩展性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebfe/9828199/21cbfc09e153/HYP-36-0-g011.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验