Mortazavifar Seyedeh Leila, Salehi Mohammad Reza, Shahraki Mojtaba, Abiri Ebrahim
Department of Electrical and Electronics Engineering, Shiraz University of Technology, Modarres Blvd, 71557-13876, Shiraz, Iran.
Faculty of Electrical and Electronics Engineering, University of Sistan and Baluchestan, Daneshgah Blvd, 98613-35856, Zahedan, Iran.
Front Optoelectron. 2022 Apr 6;15(1):6. doi: 10.1007/s12200-022-00010-x.
This paper investigates how the dimensions and arrangements of stadium silicon nanowires (NWs) affect their absorption properties. Compared to other NWs, the structure proposed here has a simple geometry, while its absorption rate is comparable to that of very complex structures. It is shown that changing the cross-section of NW from circular (or rectangular) to a stadium shape leads to change in the position and the number of absorption modes of the NW. In a special case, these modes result in the maximum absorption inside NWs. Another method used in this paper to attain broadband absorption is utilization of multiple NWs which have different geometries. However, the maximum enhancement is achieved using non-close packed NW. These structures can support more cavity modes, while NW scattering leads to broadening of the absorption spectra. All the structures are optimized using particle swarm optimizations. Using these optimized structures, it is viable to enhance the absorption by solar cells without introducing more absorbent materials.
本文研究了体育场形硅纳米线(NWs)的尺寸和排列方式如何影响其吸收特性。与其他纳米线相比,这里提出的结构具有简单的几何形状,而其吸收率与非常复杂的结构相当。结果表明,将纳米线的横截面从圆形(或矩形)改变为体育场形状会导致纳米线吸收模式的位置和数量发生变化。在一种特殊情况下,这些模式会导致纳米线内部的最大吸收。本文使用的另一种实现宽带吸收的方法是利用具有不同几何形状的多个纳米线。然而,使用非紧密堆积的纳米线可实现最大增强。这些结构可以支持更多的腔模,而纳米线散射会导致吸收光谱变宽。所有结构均使用粒子群优化算法进行了优化。使用这些优化结构,在不引入更多吸收材料的情况下提高太阳能电池的吸收率是可行的。