Suppr超能文献

投票集成在提高深度神经网络准确性方面的应用:一种预测胚胎倍性状态的非侵入性方法。

The use of voting ensembles to improve the accuracy of deep neural networks as a non-invasive method to predict embryo ploidy status.

机构信息

Division of Reproductive Endocrinology and Infertility, Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Suite 10A, VincentBoston, MA, 02114, USA.

Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA.

出版信息

J Assist Reprod Genet. 2023 Feb;40(2):301-308. doi: 10.1007/s10815-022-02707-6. Epub 2023 Jan 14.

Abstract

PURPOSE

To determine if creating voting ensembles combining convolutional neural networks (CNN), support vector machine (SVM), and multi-layer neural networks (NN) alongside clinical parameters improves the accuracy of artificial intelligence (AI) as a non-invasive method for predicting aneuploidy.

METHODS

A cohort of 699 day 5 PGT-A tested blastocysts was used to train, validate, and test a CNN to classify embryos as euploid/aneuploid. All embryos were analyzed using a modified FAST-SeqS next-generation sequencing method. Patient characteristics such as maternal age, AMH level, paternal sperm quality, and total number of normally fertilized (2PN) embryos were processed using SVM and NN. To improve model performance, we created voting ensembles using CNN, SVM, and NN to combine our imaging data with clinical parameter variations. Statistical significance was evaluated with a one-sample t-test with 2 degrees of freedom.

RESULTS

When assessing blastocyst images alone, the CNN test accuracy was 61.2% (± 1.32% SEM, n = 3 models) in correctly classifying euploid/aneuploid embryos (n = 140 embryos). When the best CNN model was assessed as a voting ensemble, the test accuracy improved to 65.0% (AMH; p = 0.1), 66.4% (maternal age; p = 0.06), 65.7% (maternal age, AMH; p = 0.08), 66.4% (maternal age, AMH, number of 2PNs; p = 0.06), and 71.4% (maternal age, AMH, number of 2PNs, sperm quality; p = 0.02) (n = 140 embryos).

CONCLUSIONS

By combining CNNs with patient characteristics, voting ensembles can be created to improve the accuracy of classifying embryos as euploid/aneuploid from CNN alone, allowing for AI to serve as a potential non-invasive method to aid in karyotype screening and selection of embryos.

摘要

目的

确定创建投票集成,结合卷积神经网络(CNN)、支持向量机(SVM)和多层神经网络(NN)以及临床参数是否可以提高人工智能(AI)作为一种非侵入性方法预测非整倍体的准确性,该方法用于预测胚胎的整倍体/非整倍体。

方法

使用 699 个第 5 天的 PGT-A 测试的囊胚队列来训练、验证和测试 CNN 以对胚胎进行整倍体/非整倍体分类。所有胚胎均采用改良的 FAST-SeqS 下一代测序方法进行分析。使用 SVM 和 NN 处理患者特征,如母亲年龄、AMH 水平、父亲精子质量和正常受精(2PN)胚胎的总数。为了提高模型性能,我们使用 CNN、SVM 和 NN 创建投票集成,将我们的成像数据与临床参数变化结合起来。使用具有 2 个自由度的单样本 t 检验评估统计学意义。

结果

当单独评估囊胚图像时,CNN 测试准确率为 61.2%(±1.32% SEM,n=3 个模型),正确分类整倍体/非整倍体胚胎(n=140 个胚胎)。当最佳 CNN 模型作为投票集成进行评估时,测试准确率提高到 65.0%(AMH;p=0.1)、66.4%(母亲年龄;p=0.06)、65.7%(母亲年龄、AMH;p=0.08)、66.4%(母亲年龄、AMH、2PN 数量;p=0.06)和 71.4%(母亲年龄、AMH、2PN 数量、精子质量;p=0.02)(n=140 个胚胎)。

结论

通过将 CNN 与患者特征相结合,可以创建投票集成以提高 CNN 单独分类胚胎为整倍体/非整倍体的准确性,使 AI 成为一种潜在的非侵入性方法,辅助核型筛查和胚胎选择。

相似文献

1
The use of voting ensembles to improve the accuracy of deep neural networks as a non-invasive method to predict embryo ploidy status.
J Assist Reprod Genet. 2023 Feb;40(2):301-308. doi: 10.1007/s10815-022-02707-6. Epub 2023 Jan 14.
5
Incidence of haploidy and triploidy in trophectoderm biopsies of blastocysts derived from normally and abnormally fertilized oocytes.
J Assist Reprod Genet. 2024 Dec;41(12):3357-3370. doi: 10.1007/s10815-024-03278-4. Epub 2024 Oct 8.
9
Chaotic blastocysts in preimplantation genetic testing for aneuploidy: prevalence, characterization, and re-biopsy results.
Fertil Steril. 2025 Aug;124(2):319-326. doi: 10.1016/j.fertnstert.2025.04.001. Epub 2025 May 7.

引用本文的文献

1
Machine learning and microfluidic integration for oocyte quality prediction.
Sci Rep. 2025 Jul 22;15(1):26532. doi: 10.1038/s41598-025-11810-4.
2
The Role of Artificial Intelligence in Female Infertility Diagnosis: An Update.
J Clin Med. 2025 Apr 30;14(9):3127. doi: 10.3390/jcm14093127.
3
Non-invasive prediction of human embryonic ploidy using artificial intelligence: a systematic review and meta-analysis.
EClinicalMedicine. 2024 Oct 24;77:102897. doi: 10.1016/j.eclinm.2024.102897. eCollection 2024 Nov.
5
A generalized AI system for human embryo selection covering the entire IVF cycle via multi-modal contrastive learning.
Patterns (N Y). 2024 May 2;5(7):100985. doi: 10.1016/j.patter.2024.100985. eCollection 2024 Jul 12.

本文引用的文献

5
Using outcome data from one thousand mosaic embryo transfers to formulate an embryo ranking system for clinical use.
Fertil Steril. 2021 May;115(5):1212-1224. doi: 10.1016/j.fertnstert.2020.11.041. Epub 2021 Mar 6.
7
Evaluation of deep convolutional neural networks in classifying human embryo images based on their morphological quality.
Heliyon. 2021 Feb 23;7(2):e06298. doi: 10.1016/j.heliyon.2021.e06298. eCollection 2021 Feb.
10
Consistency and objectivity of automated embryo assessments using deep neural networks.
Fertil Steril. 2020 Apr;113(4):781-787.e1. doi: 10.1016/j.fertnstert.2019.12.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验