Suppr超能文献

一种人工智能模型(整倍体预测算法)可以根据时差数据预测胚胎的倍性状态。

An artificial intelligence model (euploid prediction algorithm) can predict embryo ploidy status based on time-lapse data.

机构信息

Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 430030, Wuhan, People's Republic of China.

出版信息

Reprod Biol Endocrinol. 2021 Dec 13;19(1):185. doi: 10.1186/s12958-021-00864-4.

Abstract

BACKGROUND

For the association between time-lapse technology (TLT) and embryo ploidy status, there has not yet been fully understood. TLT has the characteristics of large amount of data and non-invasiveness. If we want to accurately predict embryo ploidy status from TLT, artificial intelligence (AI) technology is a good choice. However, the current work of AI in this field needs to be strengthened.

METHODS

A total of 469 preimplantation genetic testing (PGT) cycles and 1803 blastocysts from April 2018 to November 2019 were included in the study. All embryo images are captured during 5 or 6 days after fertilization before biopsy by time-lapse microscope system. All euploid embryos or aneuploid embryos are used as data sets. The data set is divided into training set, validation set and test set. The training set is mainly used for model training, the validation set is mainly used to adjust the hyperparameters of the model and the preliminary evaluation of the model, and the test set is used to evaluate the generalization ability of the model. For better verification, we used data other than the training data for external verification. A total of 155 PGT cycles from December 2019 to December 2020 and 523 blastocysts were included in the verification process.

RESULTS

The euploid prediction algorithm (EPA) was able to predict euploid on the testing dataset with an area under curve (AUC) of 0.80.

CONCLUSIONS

The TLT incubator has gradually become the choice of reproductive centers. Our AI model named EPA that can predict embryo ploidy well based on TLT data. We hope that this system can serve all in vitro fertilization and embryo transfer (IVF-ET) patients in the future, allowing embryologists to have more non-invasive aids when selecting the best embryo to transfer.

摘要

背景

关于时间 lapse 技术(TLT)与胚胎倍性状态之间的关联,目前尚未完全理解。TLT 具有数据量大且非侵入性的特点。如果我们想从 TLT 准确预测胚胎倍性状态,人工智能(AI)技术是一个不错的选择。然而,当前该领域 AI 的工作尚需加强。

方法

本研究共纳入 2018 年 4 月至 2019 年 11 月的 469 个植入前遗传学检测(PGT)周期和 1803 个囊胚。所有胚胎图像均在受精后 5 或 6 天通过时差显微镜系统采集,在活检前进行采集。所有整倍体胚胎或非整倍体胚胎均作为数据集。数据集分为训练集、验证集和测试集。训练集主要用于模型训练,验证集主要用于调整模型的超参数和对模型进行初步评估,测试集用于评估模型的泛化能力。为了更好地验证,我们使用了除训练数据之外的数据进行外部验证。2019 年 12 月至 2020 年 12 月,共纳入 155 个 PGT 周期和 523 个囊胚进行验证过程。

结果

整倍体预测算法(EPA)能够在测试数据集上以 0.80 的曲线下面积(AUC)预测整倍体。

结论

TLT 培养箱已逐渐成为生殖中心的选择。我们的 AI 模型命名为 EPA,它可以根据 TLT 数据很好地预测胚胎倍性。我们希望该系统未来能够为所有体外受精和胚胎移植(IVF-ET)患者提供服务,使胚胎学家在选择最佳胚胎移植时拥有更多非侵入性的辅助手段。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c6d/8667440/c55852f198a4/12958_2021_864_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验