Chow Hwee Kwan, Fei Yijie, Han Daniel
School of Economics, Singapore Management University, Singapore, Singapore.
College of Finance and Statistics, Hunan University, Changsha, China.
Empir Econ. 2023 Jan 9:1-25. doi: 10.1007/s00181-022-02356-9.
This study compares two distinct approaches, pooling forecasts from single indicator MIDAS models versus pooling information from indicators into factor MIDAS models, for short-term Singapore GDP growth forecasting with a large ragged-edge mixed frequency dataset. We consider various popular weighting schemes in the literature when conducting forecast pooling. As for factor extraction, both the conventional dynamic factor model and the three-pass regression filter approach are considered. We investigate the relative predictive performance of all methods in a pseudo-out-of-sample forecasting exercise from 2007Q4 to 2020Q3. In the stable growth non-crisis period, no substantial difference in predictive performance is found across forecast models. In comparison, we find information pooling tends to dominate both the quarterly autoregressive benchmark model and the forecast pooling strategy particularly during the Global Financial Crisis.
The online version contains supplementary material available at 10.1007/s00181-022-02356-9.
本研究比较了两种不同的方法,即将单指标MIDAS模型的预测结果进行汇总,与将指标信息汇总到因子MIDAS模型中,利用一个大型参差不齐的混合频率数据集对新加坡短期GDP增长进行预测。在进行预测汇总时,我们考虑了文献中各种流行的加权方案。至于因子提取,我们同时考虑了传统的动态因子模型和三阶段回归滤波方法。我们在2007年第四季度至2020年第三季度的伪样本外预测练习中研究了所有方法的相对预测性能。在稳定增长的非危机时期,各预测模型的预测性能没有显著差异。相比之下,我们发现信息汇总往往优于季度自回归基准模型和预测汇总策略,尤其是在全球金融危机期间。
在线版本包含可在10.1007/s00181-022-02356-9获取的补充材料。