School of Medical Economics and Management, Anhui University of Chinese Medicine, Hefei, China.
Key Laboratory of Data Science & Innovative Development of Traditional Chinese Medicine, Philosophy and Social Sciences of Anhui Province, Hefei, China.
PLoS One. 2024 Jul 31;19(7):e0305523. doi: 10.1371/journal.pone.0305523. eCollection 2024.
In this paper, we introduce the mixed-frequency data model (MIDAS) to China's insurance demand forecasting. We select the monthly indicators Consumer Confidence Index (CCI), China Economic Policy Uncertainty Index (EPU), Consumer Price Index (PPI), and quarterly indicator Depth of Insurance (TID) to construct a Mixed Data Sampling (MIDAS) regression model, which is used to study the impact and forecasting effect of CCI, EPU, and PPI on China's insurance demand. To ensure forecasting accuracy, we investigate the forecasting effects of the MIDAS models with different weighting functions, forecasting windows, and a combination of forecasting methods, and use the selected optimal MIDAS models to forecast the short-term insurance demand in China. The experimental results show that the MIDAS model has good forecasting performance, especially in short-term forecasting. Rolling window and recursive identification prediction can improve the prediction accuracy, and the combination prediction makes the results more robust. Consumer confidence is the main factor influencing the demand for insurance during the COVID-19 period, and the demand for insurance is most sensitive to changes in consumer confidence. Shortly, China's insurance demand is expected to return to the pre-COVID-19 level by 2023Q2, showing positive development. The findings of the study provide new ideas for China's insurance policymaking.
本文将混合频率数据模型(MIDAS)引入中国保险需求预测中。我们选择月度指标消费者信心指数(CCI)、中国经济政策不确定性指数(EPU)、消费者价格指数(PPI)和季度指标保险深度(TID)构建混合数据抽样(MIDAS)回归模型,用于研究 CCI、EPU 和 PPI 对中国保险需求的影响和预测效果。为了确保预测精度,我们研究了不同加权函数、预测窗口和预测方法组合的 MIDAS 模型的预测效果,并使用选定的最优 MIDAS 模型对中国短期保险需求进行预测。实验结果表明,MIDAS 模型具有良好的预测性能,尤其是在短期预测方面。滚动窗口和递归识别预测可以提高预测精度,组合预测使结果更加稳健。消费者信心是 COVID-19 期间影响保险需求的主要因素,保险需求对消费者信心的变化最为敏感。总之,预计到 2023 年第二季度,中国的保险需求将恢复到 COVID-19 前的水平,呈现积极发展态势。本研究结果为中国的保险政策制定提供了新的思路。