Castro-Ochoa Lelie Denise, Hernández-Leyva Sandy Rocío, Medina-Godoy Sergio, Gómez-Rodríguez Javier, Aguilar-Uscanga María Guadalupe, Castro-Martínez Claudia
Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional, CIIDIR Sinaloa, Blvd. Juan de Dios Bátiz Paredes No. 250. Col. San Joachin, CP 81101 Guasave, Sinaloa México.
Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo de Alimentos (UNIDA), H. Veracruz, México.
3 Biotech. 2023 Feb;13(2):43. doi: 10.1007/s13205-022-03444-4. Epub 2023 Jan 11.
The production of second-generation bioethanol has several challenges, among them finding cheap and efficient enzymes for a sustainable process. In this work, we analyzed two native fungi, and , as a source of cellulolytic enzyme production, and corn stover, wheat bran, chickpeas, and bean straw as a carbon source in two fermentation systems: submerged and solid fermentation. Corn stover was selected for cellulase production in both fermentation systems, because we found the highest enzymatic activities when carboxymethyl cellulase activity (CMCase) was assessed using CMC as substrate. showed the highest CMCase activity (1.6 U/mL), while had the highest filter paper activity (Fpase) (0.39 U/mL). The ß-glucosidase activities produced by both fungi were similar in submerged fermentation using corn stover as substrate. Through in-gel zymography, three polypeptides with cellulolytic activities were identified in each fungus: with molecular weights of ~ 38, 45 and 70 kDa in and ~ 21, 63 and 100 kDa in . The best results for saccharification (10.11 g/L of reducing sugars) of diluted acid pretreated corn stover were obtained after 36 h of the hydrolytic process at pH 5 and 50 °C using the enzyme extract of This is the first report of cellulase identification in and the saccharification of corn stover using enzymes of this fungus. Enzymatic extracts of and obtained from low-cost lignocellulosic biomass have great potential for use in the production of second-generation bioethanol.
第二代生物乙醇的生产面临若干挑战,其中包括为可持续生产过程寻找廉价且高效的酶。在本研究中,我们分析了两种本地真菌,[真菌名称1]和[真菌名称2],作为纤维素分解酶的生产来源,并在两种发酵系统(深层发酵和固态发酵)中,以玉米秸秆、麦麸、鹰嘴豆和豆秸作为碳源。在两种发酵系统中均选择玉米秸秆用于纤维素酶生产,因为当以羧甲基纤维素(CMC)为底物评估羧甲基纤维素酶活性(CMCase)时,我们发现其酶活性最高。[真菌名称1]表现出最高的CMCase活性(1.6 U/mL),而[真菌名称2]具有最高的滤纸酶活性(Fpase)(0.39 U/mL)。在以玉米秸秆为底物的深层发酵中,两种真菌产生的β-葡萄糖苷酶活性相似。通过凝胶内酶谱分析,在每种真菌中鉴定出三种具有纤维素分解活性的多肽:[真菌名称1]中的分子量约为38、45和70 kDa,[真菌名称2]中的分子量约为21、63和100 kDa。在pH 5和50°C的水解过程36小时后,使用[真菌名称1]的酶提取物对稀酸预处理的玉米秸秆进行糖化,得到了最佳结果(还原糖为10.11 g/L)。这是关于在[真菌名称2]中鉴定纤维素酶以及使用该真菌的酶对玉米秸秆进行糖化的首次报道。从低成本木质纤维素生物质中获得的[真菌名称1]和[真菌名称2]的酶提取物在第二代生物乙醇生产中具有巨大的应用潜力。