Suppr超能文献

用于细菌吩嗪生成及活力电化学监测的纤维素基激光诱导石墨烯器件

Cellulose-Based Laser-Induced Graphene Devices for Electrochemical Monitoring of Bacterial Phenazine Production and Viability.

作者信息

Butler Derrick, Kammarchedu Vinay, Zhou Keren, Peeke Lachlan, Lyle Luke, Snyder David W, Ebrahimi Aida

机构信息

Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802.

Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, PA 16802.

出版信息

Sens Actuators B Chem. 2023 Mar 1;378. doi: 10.1016/j.snb.2022.133090. Epub 2022 Nov 30.

Abstract

As an easily disposable substrate with a microporous texture, paper is a well-suited, generic substrate to build analytical devices for studying bacteria. Using a multi-pass lasing process, cellulose-based laser-induced graphene (cLIG) with a sheet resistance of 43.7 ± 2.3 Ωsq is developed and utilized in the fabrication of low-cost and environmentally-friendly paper sensor arrays. Two case studies with and demonstrate the practicality of the cLIG sensors for the electrochemical analysis of bacteria. The first study measures the time-dependent profile of phenazines released from both planktonic (up to 60 h) and on-chip-grown (up to 22 h) cultures. While similarities do exist, marked differences in phenazine production are seen with cells grown directly on cLIG compared to the planktonic culture. Moreover, in planktonic cultures, pyocyanin levels increase early on and plateau around 20 h, while optical density measurements increase monotonically over the duration of testing. The second study monitors the viability and metabolic activity of using a resazurin-based electrochemical assay. These results demonstrate the utility of cLIG paper sensors as an inexpensive and versatile platform for monitoring bacteria and could enable new opportunities in high-throughput antibiotic susceptibility testing, ecological studies, and biofilm studies.

摘要

作为一种具有微孔结构且易于一次性使用的基底,纸张是构建用于研究细菌的分析装置的合适通用基底。通过多程激光加工工艺,开发出了方阻为43.7±2.3Ω/sq的纤维素基激光诱导石墨烯(cLIG),并将其用于制造低成本且环保的纸质传感器阵列。两个案例研究证明了cLIG传感器在细菌电化学分析中的实用性。第一个研究测量了从浮游(长达60小时)和芯片上生长(长达22小时)的培养物中释放的吩嗪随时间的变化情况。虽然确实存在相似之处,但与浮游培养相比,直接在cLIG上生长的细胞在吩嗪产生方面存在明显差异。此外,在浮游培养中,绿脓菌素水平在早期升高,并在20小时左右趋于平稳,而光密度测量值在测试期间单调增加。第二个研究使用基于刃天青的电化学分析方法监测的活力和代谢活性。这些结果证明了cLIG纸质传感器作为监测细菌的廉价且通用平台的实用性,并可能为高通量抗生素敏感性测试、生态学研究和生物膜研究带来新机遇。

相似文献

1
Cellulose-Based Laser-Induced Graphene Devices for Electrochemical Monitoring of Bacterial Phenazine Production and Viability.
Sens Actuators B Chem. 2023 Mar 1;378. doi: 10.1016/j.snb.2022.133090. Epub 2022 Nov 30.
3
Electrochemical monitoring of the impact of polymicrobial infections on Pseudomonas aeruginosa and growth dependent medium.
Biosens Bioelectron. 2019 Oct 1;142:111538. doi: 10.1016/j.bios.2019.111538. Epub 2019 Jul 25.
5
Laser-Induced Corrugated Graphene Films for Integrated Multimodal Sensors.
ACS Appl Mater Interfaces. 2021 Aug 11;13(31):37433-37444. doi: 10.1021/acsami.1c12686. Epub 2021 Jul 29.
6
The Pseudomonas aeruginosa efflux pump MexGHI-OpmD transports a natural phenazine that controls gene expression and biofilm development.
Proc Natl Acad Sci U S A. 2016 Jun 21;113(25):E3538-47. doi: 10.1073/pnas.1600424113. Epub 2016 Jun 6.
7
Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa.
Appl Environ Microbiol. 2016 Jul 29;82(16):5026-38. doi: 10.1128/AEM.01342-16. Print 2016 Aug 15.
9
Electrochemical Potential Influences Phenazine Production, Electron Transfer and Consequently Electric Current Generation by .
Front Microbiol. 2017 May 18;8:892. doi: 10.3389/fmicb.2017.00892. eCollection 2017.
10
Disposable Paper-Based Biosensors: Optimizing the Electrochemical Properties of Laser-Induced Graphene.
ACS Appl Mater Interfaces. 2022 Jul 13;14(27):31109-31120. doi: 10.1021/acsami.2c06350. Epub 2022 Jun 29.

引用本文的文献

2
Recent advances in graphene-based electroanalytical devices for healthcare applications.
Nanoscale. 2024 Jul 11;16(27):12857-12882. doi: 10.1039/d3nr06137j.

本文引用的文献

2
Disposable Paper-Based Biosensors: Optimizing the Electrochemical Properties of Laser-Induced Graphene.
ACS Appl Mater Interfaces. 2022 Jul 13;14(27):31109-31120. doi: 10.1021/acsami.2c06350. Epub 2022 Jun 29.
3
Surface Engineering of Laser-Induced Graphene Enables Long-Term Monitoring of On-Body Uric Acid and pH Simultaneously.
Nano Lett. 2022 Jul 13;22(13):5451-5458. doi: 10.1021/acs.nanolett.2c01500. Epub 2022 Jun 22.
4
Simpler Procedure and Improved Performance for Pathogenic Bacteria Analysis with a Paper-Based Ratiometric Fluorescent Sensor Array.
Anal Chem. 2022 Feb 8;94(5):2615-2624. doi: 10.1021/acs.analchem.1c05021. Epub 2022 Jan 24.
5
Laser-induced graphene non-enzymatic glucose sensors for on-body measurements.
Biosens Bioelectron. 2021 Dec 1;193:113606. doi: 10.1016/j.bios.2021.113606. Epub 2021 Sep 1.
6
Electrochemical Sensing of Neonicotinoids Using Laser-Induced Graphene.
ACS Sens. 2021 Aug 27;6(8):3063-3071. doi: 10.1021/acssensors.1c01082. Epub 2021 Aug 9.
7
Laser-Induced Graphene from Paper for Mechanical Sensing.
ACS Appl Mater Interfaces. 2021 Mar 3;13(8):10210-10221. doi: 10.1021/acsami.0c20270. Epub 2021 Feb 23.
8
A Review of Methods to Determine Viability, Vitality, and Metabolic Rates in Microbiology.
Front Microbiol. 2020 Nov 17;11:547458. doi: 10.3389/fmicb.2020.547458. eCollection 2020.
9
Organic redox-active crystalline layers for reagent-free electrochemical antibiotic susceptibility testing (ORACLE-AST).
Biosens Bioelectron. 2021 Jan 15;172:112615. doi: 10.1016/j.bios.2020.112615. Epub 2020 Sep 14.
10
Engineering strategies for enhancing the performance of electrochemical paper-based analytical devices.
Biosens Bioelectron. 2020 Nov 1;167:112506. doi: 10.1016/j.bios.2020.112506. Epub 2020 Aug 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验