Suppr超能文献

铜绿假单胞菌的菌株和底物依赖性氧化还原介体与电产生

Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa.

作者信息

Bosire Erick M, Blank Lars M, Rosenbaum Miriam A

机构信息

Institute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.

Institute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany

出版信息

Appl Environ Microbiol. 2016 Jul 29;82(16):5026-38. doi: 10.1128/AEM.01342-16. Print 2016 Aug 15.

Abstract

UNLABELLED

Pseudomonas aeruginosa is an important, thriving member of microbial communities of microbial bioelectrochemical systems (BES) through the production of versatile phenazine redox mediators. Pure culture experiments with a model strain revealed synergistic interactions of P. aeruginosa with fermenting microorganisms whereby the synergism was mediated through the shared fermentation product 2,3-butanediol. Our work here shows that the behavior and efficiency of P. aeruginosa in mediated current production is strongly dependent on the strain of P. aeruginosa We compared levels of phenazine production by the previously investigated model strain P. aeruginosa PA14, the alternative model strain P. aeruginosa PAO1, and the BES isolate Pseudomonas sp. strain KRP1 with glucose and the fermentation products 2,3-butanediol and ethanol as carbon substrates. We found significant differences in substrate-dependent phenazine production and resulting anodic current generation for the three strains, with the BES isolate KRP1 being overall the best current producer and showing the highest electrochemical activity with glucose as a substrate (19 μA cm(-2) with ∼150 μg ml(-1) phenazine carboxylic acid as a redox mediator). Surprisingly, P. aeruginosa PAO1 showed very low phenazine production and electrochemical activity under all tested conditions.

IMPORTANCE

Microbial fuel cells and other microbial bioelectrochemical systems hold great promise for environmental technologies such as wastewater treatment and bioremediation. While there is much emphasis on the development of materials and devices to realize such systems, the investigation and a deeper understanding of the underlying microbiology and ecology are lagging behind. Physiological investigations focus on microorganisms exhibiting direct electron transfer in pure culture systems. Meanwhile, mediated electron transfer with natural redox compounds produced by, for example, Pseudomonas aeruginosa might enable an entire microbial community to access a solid electrode as an alternative electron acceptor. To better understand the ecological relationships between mediator producers and mediator utilizers, we here present a comparison of the phenazine-dependent electroactivities of three Pseudomonas strains. This work forms the foundation for more complex coculture investigations of mediated electron transfer in microbial fuel cells.

摘要

未标记

铜绿假单胞菌是微生物生物电化学系统(BES)微生物群落中的重要且活跃的成员,它能产生多种吩嗪氧化还原介质。对一株模式菌株进行的纯培养实验揭示了铜绿假单胞菌与发酵微生物之间的协同相互作用,这种协同作用是通过共享的发酵产物2,3 - 丁二醇介导的。我们在此的工作表明,铜绿假单胞菌在介导电流产生中的行为和效率强烈依赖于铜绿假单胞菌的菌株。我们比较了先前研究的模式菌株铜绿假单胞菌PA14、替代模式菌株铜绿假单胞菌PAO1以及BES分离株假单胞菌属菌株KRP1以葡萄糖、发酵产物2,3 - 丁二醇和乙醇作为碳底物时的吩嗪产生水平。我们发现这三种菌株在底物依赖性吩嗪产生以及由此产生的阳极电流方面存在显著差异,BES分离株KRP1总体上是最佳的电流产生者,并且以葡萄糖作为底物时表现出最高的电化学活性(以约150μg/ml吩嗪羧酸作为氧化还原介质时为19μA/cm²)。令人惊讶的是,在所有测试条件下,铜绿假单胞菌PAO1的吩嗪产生和电化学活性都非常低。

重要性

微生物燃料电池和其他微生物生物电化学系统在废水处理和生物修复等环境技术方面具有巨大潜力。虽然人们非常重视开发实现此类系统的材料和装置,但对其潜在的微生物学和生态学的研究及深入理解却滞后了。生理学研究主要集中在纯培养系统中表现出直接电子转移的微生物。与此同时,通过例如铜绿假单胞菌产生的天然氧化还原化合物进行的介导电子转移可能使整个微生物群落能够将固体电极作为替代电子受体。为了更好地理解介质产生者和介质利用者之间的生态关系,我们在此比较了三种假单胞菌菌株的吩嗪依赖性电活性。这项工作为微生物燃料电池中介导电子转移的更复杂共培养研究奠定了基础。

相似文献

1
Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa.
Appl Environ Microbiol. 2016 Jul 29;82(16):5026-38. doi: 10.1128/AEM.01342-16. Print 2016 Aug 15.
2
Boosting mediated electron transfer in bioelectrochemical systems with tailored defined microbial cocultures.
Biotechnol Bioeng. 2018 Sep;115(9):2183-2193. doi: 10.1002/bit.26732. Epub 2018 Jun 6.
3
Electrochemical Potential Influences Phenazine Production, Electron Transfer and Consequently Electric Current Generation by .
Front Microbiol. 2017 May 18;8:892. doi: 10.3389/fmicb.2017.00892. eCollection 2017.
6
Biofilm promoted current generation of Pseudomonas aeruginosa microbial fuel cell via improving the interfacial redox reaction of phenazines.
Bioelectrochemistry. 2017 Oct;117:34-39. doi: 10.1016/j.bioelechem.2017.04.003. Epub 2017 May 23.
7
Screening of natural phenazine producers for electroactivity in bioelectrochemical systems.
Microb Biotechnol. 2023 Mar;16(3):579-594. doi: 10.1111/1751-7915.14199. Epub 2022 Dec 26.
8
Controlling the Production of Phenazines by Modulating the Genetic Repertoire.
ACS Chem Biol. 2020 Dec 18;15(12):3244-3252. doi: 10.1021/acschembio.0c00805. Epub 2020 Dec 1.
9
Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440.
Front Microbiol. 2015 Apr 10;6:284. doi: 10.3389/fmicb.2015.00284. eCollection 2015.
10
Spontaneous quorum sensing mutation modulates electroactivity of Pseudomonas aeruginosa PA14.
Bioelectrochemistry. 2017 Oct;117:1-8. doi: 10.1016/j.bioelechem.2017.04.006. Epub 2017 Apr 29.

引用本文的文献

1
Application of exogenous electron mediator in fermentation to enhance the production of value-added products.
Appl Environ Microbiol. 2025 Jun 18;91(6):e0049525. doi: 10.1128/aem.00495-25. Epub 2025 May 12.
3
Valorization of mixed blackwater/agricultural wastes for bioelectricity and biohydrogen production: A microbial treatment pathway.
Heliyon. 2024 Dec 12;11(1):e41126. doi: 10.1016/j.heliyon.2024.e41126. eCollection 2025 Jan 15.
5
Interactions among microorganisms functionally active for electron transfer and pollutant degradation in natural environments.
Eco Environ Health. 2023 Jan 27;2(1):3-15. doi: 10.1016/j.eehl.2023.01.002. eCollection 2023 Mar.
6
Monitoring biofilm growth and dispersal in real-time with impedance biosensors.
J Ind Microbiol Biotechnol. 2023 Feb 17;50(1). doi: 10.1093/jimb/kuad022.
7
Microbial electricity-driven anaerobic phenol degradation in bioelectrochemical systems.
Environ Sci Ecotechnol. 2023 Jul 26;17:100307. doi: 10.1016/j.ese.2023.100307. eCollection 2024 Jan.
8
The two faces of pyocyanin - why and how to steer its production?
World J Microbiol Biotechnol. 2023 Feb 18;39(4):103. doi: 10.1007/s11274-023-03548-w.
9
Screening of natural phenazine producers for electroactivity in bioelectrochemical systems.
Microb Biotechnol. 2023 Mar;16(3):579-594. doi: 10.1111/1751-7915.14199. Epub 2022 Dec 26.
10
Leveraging substrate flexibility and product selectivity of acetogens in two-stage systems for chemical production.
Microb Biotechnol. 2023 Feb;16(2):218-237. doi: 10.1111/1751-7915.14172. Epub 2022 Dec 4.

本文引用的文献

1
Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440.
Front Microbiol. 2015 Apr 10;6:284. doi: 10.3389/fmicb.2015.00284. eCollection 2015.
3
Candida albicans ethanol stimulates Pseudomonas aeruginosa WspR-controlled biofilm formation as part of a cyclic relationship involving phenazines.
PLoS Pathog. 2014 Oct 23;10(10):e1004480. doi: 10.1371/journal.ppat.1004480. eCollection 2014 Oct.
6
Metabolite transfer with the fermentation product 2,3-butanediol enhances virulence by Pseudomonas aeruginosa.
ISME J. 2014 Jun;8(6):1210-20. doi: 10.1038/ismej.2013.232. Epub 2014 Jan 9.
8
Microbial syntrophy: interaction for the common good.
FEMS Microbiol Rev. 2013 May;37(3):384-406. doi: 10.1111/1574-6976.12019.
9
Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection.
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):1059-64. doi: 10.1073/pnas.1214550110. Epub 2012 Dec 31.
10
Catabolite repression in Pseudomonas aeruginosa PAO1 regulates the uptake of C4 -dicarboxylates depending on succinate concentration.
Environ Microbiol. 2013 Jun;15(6):1707-16. doi: 10.1111/1462-2920.12056. Epub 2012 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验