Suppr超能文献

用分子模拟解释氢-氘交换实验:HDXer系综重加权软件的教程与应用 [文章v1.0]

Interpreting Hydrogen-Deuterium Exchange Experiments with Molecular Simulations: Tutorials and Applications of the HDXer Ensemble Reweighting Software [Article v1.0].

作者信息

Lee Paul Suhwan, Bradshaw Richard T, Marinelli Fabrizio, Kihn Kyle, Smith Ally, Wintrode Patrick L, Deredge Daniel J, Faraldo-Gómez José D, Forrest Lucy R

机构信息

Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.

Theoretical Molecular Biophysics Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.

出版信息

Living J Comput Mol Sci. 2021;3(1). doi: 10.33011/livecoms.3.1.1521. Epub 2022 Jan 26.

Abstract

Hydrogen-deuterium exchange (HDX) is a comprehensive yet detailed probe of protein structure and dynamics and, coupled to mass spectrometry, has become a powerful tool for investigating an increasingly large array of systems. Computer simulations are often used to help rationalize experimental observations of exchange, but interpretations have frequently been limited to simple, subjective correlations between microscopic dynamical fluctuations and the observed macroscopic exchange behavior. With this in mind, we previously developed the HDX ensemble reweighting approach and associated software, HDXer, to aid the objective interpretation of HDX data using molecular simulations. HDXer has two main functions; first, to compute H-D exchange rates that describe each structure in a candidate ensemble of protein structures, for example from molecular simulations, and second, to objectively reweight the conformational populations present in a candidate ensemble to conform to experimental exchange data. In this article, we first describe the HDXer approach, theory, and implementation. We then guide users through a suite of tutorials that demonstrate the practical aspects of preparing experimental data, computing HDX levels from molecular simulations, and performing ensemble reweighting analyses. Finally we provide a practical discussion of the capabilities and limitations of the HDXer methods including recommendations for a user's own analyses. Overall, this article is intended to provide an up-to-date, pedagogical counterpart to the software, which is freely available at https://github.com/Lucy-Forrest-Lab/HDXer.

摘要

氢-氘交换(HDX)是一种全面且详细的蛋白质结构与动力学探测方法,与质谱联用后,已成为研究越来越多系统的强大工具。计算机模拟常被用于帮助合理解释交换的实验观测结果,但以往的解释往往局限于微观动力学涨落与观测到的宏观交换行为之间简单的主观关联。考虑到这一点,我们之前开发了HDX系综重加权方法及相关软件HDXer,以借助分子模拟对HDX数据进行客观解释。HDXer有两个主要功能:第一,计算描述蛋白质结构候选系综中每个结构的氢-氘交换速率,例如来自分子模拟的结构;第二,客观地对候选系综中存在的构象总体进行重加权,使其符合实验交换数据。在本文中,我们首先描述HDXer方法、理论和实现。然后指导用户完成一系列教程,展示准备实验数据、从分子模拟计算HDX水平以及进行系综重加权分析的实际操作。最后,我们对HDXer方法的能力和局限性进行实际讨论,包括对用户自身分析的建议。总体而言,本文旨在为该软件提供一个最新的教学补充内容,该软件可在https://github.com/Lucy-Forrest-Lab/HDXer上免费获取。

相似文献

2
Interpretation of HDX Data by Maximum-Entropy Reweighting of Simulated Structural Ensembles.
Biophys J. 2020 Apr 7;118(7):1649-1664. doi: 10.1016/j.bpj.2020.02.005. Epub 2020 Feb 15.
4
Modeling the native ensemble of PhuS using enhanced sampling MD and HDX-ensemble reweighting.
Biophys J. 2021 Dec 7;120(23):5141-5157. doi: 10.1016/j.bpj.2021.11.010. Epub 2021 Nov 10.
5
The Deuterium Calculator: An Open-Source Tool for Hydrogen-Deuterium Exchange Mass Spectrometry Analysis.
J Proteome Res. 2023 Feb 3;22(2):532-538. doi: 10.1021/acs.jproteome.2c00558. Epub 2023 Jan 25.
9
HDX-Viewer: interactive 3D visualization of hydrogen-deuterium exchange data.
Bioinformatics. 2019 Dec 15;35(24):5331-5333. doi: 10.1093/bioinformatics/btz550.
10
Coarse-Grained Conformational Sampling of Protein Structure Improves the Fit to Experimental Hydrogen-Exchange Data.
Front Mol Biosci. 2017 Mar 10;4:13. doi: 10.3389/fmolb.2017.00013. eCollection 2017.

引用本文的文献

1
Structural proteomics defines a sequential priming mechanism for the progesterone receptor.
Nat Commun. 2025 May 12;16(1):4403. doi: 10.1038/s41467-025-59458-y.
3
Structure Characterization of a Disordered Peptide Using In-Droplet Hydrogen/Deuterium Exchange Mass Spectrometry and Molecular Dynamics.
ACS Phys Chem Au. 2024 Nov 13;5(1):17-29. doi: 10.1021/acsphyschemau.4c00048. eCollection 2025 Jan 22.
4
Neurofilament Light Chain under the Lens of Structural Mass Spectrometry.
ACS Chem Neurosci. 2025 Jan 15;16(2):141-151. doi: 10.1021/acschemneuro.4c00526. Epub 2025 Jan 2.
6
Structural proteomics defines a sequential priming mechanism for the progesterone receptor.
Res Sq. 2024 Nov 14:rs.3.rs-5199635. doi: 10.21203/rs.3.rs-5199635/v1.
7
Structural proteomics defines a sequential priming mechanism for the progesterone receptor.
bioRxiv. 2024 Oct 3:2024.09.06.611729. doi: 10.1101/2024.09.06.611729.
8
Free energy landscape of the PI3Kα C-terminal activation.
Comput Struct Biotechnol J. 2024 Jul 8;23:3118-3131. doi: 10.1016/j.csbj.2024.07.010. eCollection 2024 Dec.
9
Conformational dynamics underlying atypical chemokine receptor 3 activation.
Proc Natl Acad Sci U S A. 2024 Jul 23;121(30):e2404000121. doi: 10.1073/pnas.2404000121. Epub 2024 Jul 15.

本文引用的文献

1
Modeling the native ensemble of PhuS using enhanced sampling MD and HDX-ensemble reweighting.
Biophys J. 2021 Dec 7;120(23):5141-5157. doi: 10.1016/j.bpj.2021.11.010. Epub 2021 Nov 10.
2
Force-Correction Analysis Method for Derivation of Multidimensional Free-Energy Landscapes from Adaptively Biased Replica Simulations.
J Chem Theory Comput. 2021 Nov 9;17(11):6775-6788. doi: 10.1021/acs.jctc.1c00586. Epub 2021 Oct 20.
3
Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems.
Chem Rev. 2022 Apr 27;122(8):7562-7623. doi: 10.1021/acs.chemrev.1c00279. Epub 2021 Sep 7.
4
Recommendations for the Propagation of Uncertainty in Hydrogen Exchange-Mass Spectrometric Measurements.
J Am Soc Mass Spectrom. 2021 Jul 7;32(7):1610-1617. doi: 10.1021/jasms.0c00475. Epub 2021 Mar 25.
5
Developments in Hydrogen/Deuterium Exchange Mass Spectrometry.
Anal Chem. 2021 Jan 12;93(1):567-582. doi: 10.1021/acs.analchem.0c04281. Epub 2020 Oct 28.
6
Array programming with NumPy.
Nature. 2020 Sep;585(7825):357-362. doi: 10.1038/s41586-020-2649-2. Epub 2020 Sep 16.
7
Computational methods for exploring protein conformations.
Biochem Soc Trans. 2020 Aug 28;48(4):1707-1724. doi: 10.1042/BST20200193.
9
Deuteros 2.0: peptide-level significance testing of data from hydrogen deuterium exchange mass spectrometry.
Bioinformatics. 2021 Apr 19;37(2):270-272. doi: 10.1093/bioinformatics/btaa677.
10
How to learn from inconsistencies: Integrating molecular simulations with experimental data.
Prog Mol Biol Transl Sci. 2020;170:123-176. doi: 10.1016/bs.pmbts.2019.12.006. Epub 2020 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验