Suppr超能文献

氢氘交换质谱与分子动力学模拟和整体重加权相结合可实现高分辨率蛋白质-配体建模。

Integration of Hydrogen-Deuterium Exchange Mass Spectrometry with Molecular Dynamics Simulations and Ensemble Reweighting Enables High Resolution Protein-Ligand Modeling.

机构信息

Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States.

Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University in Prague, Prague 116 36, Czech Republic.

出版信息

J Am Soc Mass Spectrom. 2024 Nov 6;35(11):2714-2728. doi: 10.1021/jasms.4c00202. Epub 2024 Sep 10.

Abstract

Hydrogen-Deuterium exchange mass spectrometry's (HDX-MS) utility in identifying and characterizing protein-small molecule interaction sites has been established. The regions that are seen to be protected from exchange upon ligand binding indicate regions that may be interacting with the ligand, giving a qualitative understanding of the ligand binding pocket. However, quantitatively deriving an accurate high-resolution structure of the protein-ligand complex from the HDX-MS data remains a challenge, often limiting its use in applications such as small molecule drug design. Recent efforts have focused on the development of methods to quantitatively model Hydrogen-Deuterium exchange (HDX) data from computationally modeled structures to garner atomic level insights from peptide-level resolution HDX-MS. One such method, HDX ensemble reweighting (HDXer), employs maximum entropy reweighting of simulated HDX data to experimental HDX-MS to model structural ensembles. In this study, we implement and validate a workflow which quantitatively leverages HDX-MS data to accurately model protein-small molecule ligand interactions. To that end, we employ a strategy combining computational protein-ligand docking, molecular dynamics simulations, HDXer, and dimensional reduction and clustering approaches to extract high-resolution drug binding poses that most accurately conform with HDX-MS data. We apply this workflow to model the interaction of ERK2 and FosA with small molecule compounds and inhibitors they are known to bind. In five out of six of the protein-ligand pairs tested, the HDX derived protein-ligand complexes result in a ligand root-mean-square deviation (RMSD) within 2.5 Å of the known crystal structure ligand.

摘要

氢氘交换质谱(HDX-MS)已被证实可用于鉴定和描述蛋白质-小分子相互作用位点。当配体结合时,观察到的区域受到保护而不发生交换,这表明这些区域可能与配体相互作用,从而定性地了解配体结合口袋。然而,从 HDX-MS 数据中定量推导出蛋白质-配体复合物的准确高分辨率结构仍然是一个挑战,这常常限制了其在小分子药物设计等应用中的使用。最近的研究重点是开发方法,从计算建模结构中定量模拟氢氘交换(HDX)数据,以从肽级分辨率的 HDX-MS 中获得原子水平的见解。其中一种方法,HDX 集合重新加权(HDXer),采用最大熵重新加权模拟 HDX 数据与实验 HDX-MS,以模拟结构集合。在这项研究中,我们实施并验证了一种利用 HDX-MS 数据准确模拟蛋白质-小分子配体相互作用的工作流程。为此,我们采用了一种策略,结合计算蛋白质-配体对接、分子动力学模拟、HDXer 以及降维和聚类方法,提取与 HDX-MS 数据最吻合的高分辨率药物结合构象。我们将该工作流程应用于 ERK2 和 FosA 与小分子化合物及其已知结合的抑制剂的相互作用模型的构建。在所测试的 6 对蛋白质-配体对中的 5 对中,HDX 衍生的蛋白质-配体复合物的配体均方根偏差(RMSD)与已知晶体结构配体的 RMSD 在 2.5 Å 以内。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验