Suppr超能文献

如何从不一致中学习:将分子模拟与实验数据相结合。

How to learn from inconsistencies: Integrating molecular simulations with experimental data.

机构信息

Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Structural Biophysics, Niels Bohr Institute, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.

Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Atomistic Simulations Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.

出版信息

Prog Mol Biol Transl Sci. 2020;170:123-176. doi: 10.1016/bs.pmbts.2019.12.006. Epub 2020 Jan 31.

Abstract

Molecular simulations and biophysical experiments can be used to provide independent and complementary insights into the molecular origin of biological processes. A particularly useful strategy is to use molecular simulations as a modeling tool to interpret experimental measurements, and to use experimental data to refine our biophysical models. Thus, explicit integration and synergy between molecular simulations and experiments is fundamental for furthering our understanding of biological processes. This is especially true in the case where discrepancies between measured and simulated observables emerge. In this chapter, we provide an overview of some of the core ideas behind methods that were developed to improve the consistency between experimental information and numerical predictions. We distinguish between situations where experiments are used to refine our understanding and models of specific systems, and situations where experiments are used more generally to refine transferable models. We discuss different philosophies and attempt to unify them in a single framework. Until now, such integration between experiments and simulations have mostly been applied to equilibrium data, and we discuss more recent developments aimed to analyze time-dependent or time-resolved data.

摘要

分子模拟和生物物理实验可以提供独立而互补的见解,深入了解生物过程的分子起源。一种特别有用的策略是将分子模拟用作解释实验测量的建模工具,并使用实验数据来改进我们的生物物理模型。因此,分子模拟和实验之间的明确整合和协同对于深入了解生物过程至关重要。在测量和模拟可观察量之间出现差异的情况下尤其如此。在本章中,我们概述了一些核心思想,这些思想是为了提高实验信息与数值预测之间的一致性而开发的方法的基础。我们区分了实验用于改进我们对特定系统的理解和模型的情况,以及实验更普遍地用于改进可转移模型的情况。我们讨论了不同的哲学,并试图将它们统一在一个框架中。到目前为止,这种实验与模拟之间的整合主要应用于平衡数据,我们还讨论了旨在分析时变或时分辨数据的最新进展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验