Rial Rubén V, Akaârir Mourad, Canellas Francesca, Barceló Pere, Rubiño José A, Martín-Reina Aida, Gamundí Antoni, Nicolau M Cristina
Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut; Hospital Son Espases, 07120, Palma de Mallorca (España).
Neurosci Biobehav Rev. 2023 Mar;146:105041. doi: 10.1016/j.neubiorev.2023.105041. Epub 2023 Jan 14.
This report proposes that fish use the spinal-rhombencephalic regions of their brain to support their activities while awake. Instead, the brainstem-diencephalic regions support the wakefulness in amphibians and reptiles. Lastly, mammals developed the telencephalic cortex to attain the highest degree of wakefulness, the cortical wakefulness. However, a paralyzed form of spinal-rhombencephalic wakefulness remains in mammals in the form of REMS, whose phasic signs are highly efficient in promoting maternal care to mammalian litter. Therefore, the phasic REMS is highly adaptive. However, their importance is low for singletons, in which it is a neutral trait, devoid of adaptive value for adults, and is mal-adaptive for marine mammals. Therefore, they lost it. The spinal-rhombencephalic and cortical wakeful states disregard the homeostasis: animals only attend their most immediate needs: foraging defense and reproduction. However, these activities generate allostatic loads that must be recovered during NREMS, that is a paralyzed form of the amphibian-reptilian subcortical wakefulness. Regarding the regulation of tonic REMS, it depends on a hypothalamic switch. Instead, the phasic REMS depends on an independent proportional pontine control.
本报告提出,鱼类利用其大脑的脊髓-菱脑区域在清醒时支持其活动。相反,两栖动物和爬行动物的脑干-间脑区域支持清醒状态。最后,哺乳动物发展出端脑皮质以达到最高程度的清醒,即皮质清醒。然而,脊髓-菱脑清醒的一种麻痹形式以快速眼动睡眠(REMS)的形式保留在哺乳动物中,其相位特征在促进对哺乳动物幼崽的母性照料方面非常有效。因此,相位性快速眼动睡眠具有高度适应性。然而,它们对单胎动物的重要性较低,在单胎动物中它是一种中性特征,对成年动物没有适应价值,对海洋哺乳动物则是适应不良的。因此,它们失去了这种特征。脊髓-菱脑和皮质清醒状态无视内环境稳态:动物只关注其最直接迫切的需求:觅食、防御和繁殖。然而,这些活动会产生应激负荷,必须在非快速眼动睡眠(NREMS)期间恢复,非快速眼动睡眠是两栖动物-爬行动物皮层下清醒的一种麻痹形式。关于紧张性快速眼动睡眠的调节,它取决于下丘脑的一个开关。相反,相位性快速眼动睡眠取决于一个独立的成比例的脑桥控制。