State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.
University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
Adv Sci (Weinh). 2023 Mar;10(8):e2206860. doi: 10.1002/advs.202206860. Epub 2023 Jan 16.
As an emerging two-dimensional material, MXenes exhibit enormous potentials in the fields of energy storage and conversion, due to their superior conductivity, effective surface chemistry, accordion-like layered structure, and numerous ordered nanochannels. However, interlayer accumulation and chemical sluggishness of structural elements have hampered the demonstration of the superiorities of MXenes. By metal preintercalation and in situ electrochemical oxidization strategies on V CT , MXene has enlarged its interplanar spacing and excited the outermost vanadium atoms to achieve frequent transfer and high storage capacity of Zn ions in aqueous zinc-ion batteries (ZIBs). Benefiting from the synergistic effects of these strategies, the resulting VO /Mn-V C electrode exhibits the high capacity of 530 mA h g at 0.1 A g , together with a remarkable energy density of 415 W h kg and a power density of 5500 W kg . Impressively, the electrode delivers excellent cycling stability with Coulombic efficiency of nearly 100% in 2000 cycles at 5 A g . The satisfactory electrochemical performances bear comparison with those in reported vanadium-based and MXene-based aqueous ZIBs. This work provides a new methodology for safe preparation of outstanding vanadium-based electrodes and extends the applications of MXenes in the energy storage field.
作为一种新兴的二维材料,MXenes 因其卓越的导电性、有效的表面化学性质、风琴式层状结构和众多有序的纳米通道,在储能和转换领域展现出巨大的潜力。然而,层间堆积和结构元素的化学惰性阻碍了 MXenes 优越性能的展示。通过在 V CT 上采用金属预嵌入和原位电化学氧化策略,MXene 扩大了其层间距,并激发最外层的钒原子,实现了在水系锌离子电池(ZIBs)中 Zn 离子的频繁转移和高存储容量。受益于这些策略的协同效应,所得的 VO/Mn-V C 电极在 0.1 A g 时表现出 530 mA h g 的高容量,同时具有 415 Wh kg 的显著能量密度和 5500 W kg 的功率密度。令人印象深刻的是,该电极在 5 A g 下经过 2000 次循环后,具有近 100%的库仑效率和出色的循环稳定性。令人满意的电化学性能可与报道的基于钒的和基于 MXenes 的水系 ZIBs 相媲美。这项工作为安全制备出色的基于钒的电极提供了一种新方法,并扩展了 MXenes 在储能领域的应用。