Suppr超能文献

原子钴共价工程化夹层,用于改善锂离子存储性能。

Atomic Cobalt Covalently Engineered Interlayers for Superior Lithium-Ion Storage.

机构信息

National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China.

Beijing National Laboratory for Condensed Mater Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.

出版信息

Adv Mater. 2018 Aug;30(32):e1802525. doi: 10.1002/adma.201802525. Epub 2018 Jun 25.

Abstract

With the unique-layered structure, MXenes show potential as electrodes in energy-storage devices including lithium-ion (Li ) capacitors and batteries. However, the low Li -storage capacity hinders the application of MXenes in place of commercial carbon materials. Here, the vanadium carbide (V C) MXene with engineered interlayer spacing for desirable storage capacity is demonstrated. The interlayer distance of pristine V C MXene is controllably tuned to 0.735 nm resulting in improved Li-ion capacity of 686.7 mA h g at 0.1 A g , the best MXene-based Li -storage capacity reported so far. Further, cobalt ions are stably intercalated into the interlayer of V C MXene to form a new interlayer-expanded structure via strong V-O-Co bonding. The intercalated V C MXene electrodes not only exhibit superior capacity up to 1117.3 mA h g at 0.1 A g , but also deliver a significantly ultralong cycling stability over 15 000 cycles. These results clearly suggest that MXene materials with an engineered interlayer distance will be a rational route for realizing them as superstable and high-performance Li capacitor electrodes.

摘要

具有独特分层结构的 MXenes 作为电极材料在储能设备(包括锂离子电容器和电池)中具有应用潜力。然而,较低的锂离子存储容量限制了 MXenes 在替代商业碳材料方面的应用。在此,展示了具有工程化层间距以实现理想存储容量的碳化钒(VC)MXenes。通过控制调节 VC MXenes 的层间距至 0.735nm,其锂离子容量提高到 0.1Ag 下的 686.7mA h g-1,这是迄今为止报道的基于 MXenes 的最佳锂离子存储容量。此外,通过强 V-O-Co 键,将钴离子稳定地嵌入 VC MXenes 的层间,形成新的层间扩展结构。所制备的 VC MXenes 电极不仅在 0.1Ag 下表现出高达 1117.3mA h g-1 的优异容量,而且在超过 15000 次循环中表现出显著的超长循环稳定性。这些结果清楚地表明,具有工程化层间距的 MXenes 材料将是实现其作为超稳定和高性能锂离子电容器电极的合理途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验