Suppr超能文献

拟南芥多核胚乳发育的细胞动力学

Cellular dynamics of coenocytic endosperm development in Arabidopsis thaliana.

作者信息

Ali Mohammad Foteh, Shin Ji Min, Fatema Umma, Kurihara Daisuke, Berger Frédéric, Yuan Ling, Kawashima Tomokazu

机构信息

Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA.

Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA.

出版信息

Nat Plants. 2023 Feb;9(2):330-342. doi: 10.1038/s41477-022-01331-7. Epub 2023 Jan 16.

Abstract

After double fertilization, the endosperm in the seeds of many flowering plants undergoes repeated mitotic nuclear divisions without cytokinesis, resulting in a large coenocytic endosperm that then cellularizes. Growth during the coenocytic phase is strongly associated with the final seed size; however, a detailed description of the cellular dynamics controlling the unique coenocytic development in flowering plants has remained elusive. By integrating confocal microscopy live-cell imaging and genetics, we have characterized the entire development of the coenocytic endosperm of Arabidopsis thaliana including nuclear divisions, their timing intervals, nuclear movement and cytoskeleton dynamics. Around each nucleus, microtubules organize into aster-shaped structures that drive actin filament (F-actin) organization. Microtubules promote nuclear movement after division, while F-actin restricts it. F-actin is also involved in controlling the size of both the coenocytic endosperm and the mature seed. The characterization of cytoskeleton dynamics in real time throughout the entire coenocyte endosperm period provides foundational knowledge of plant coenocytic development, insights into the coordination of F-actin and microtubules in nuclear dynamics, and new opportunities to increase seed size and our food security.

摘要

双受精后,许多开花植物种子中的胚乳会经历多次有丝分裂核分裂而不进行胞质分裂,形成一个大型多核胚乳,随后细胞化。多核期的生长与最终种子大小密切相关;然而,对于控制开花植物独特的多核胚乳发育的细胞动力学的详细描述仍然难以捉摸。通过整合共聚焦显微镜活细胞成像和遗传学方法,我们已经对拟南芥多核胚乳的整个发育过程进行了表征,包括核分裂、其时间间隔、核运动和细胞骨架动力学。在每个细胞核周围,微管组织成星状结构,驱动肌动蛋白丝(F-肌动蛋白)的组织。微管在分裂后促进核运动,而F-肌动蛋白则限制核运动。F-肌动蛋白还参与控制多核胚乳和成熟种子的大小。在整个多核胚乳期实时表征细胞骨架动力学,为植物多核胚乳发育提供了基础知识,深入了解了F-肌动蛋白和微管在核动力学中的协调作用,并为增加种子大小和保障粮食安全提供了新的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验