文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

机器学习肝组织学评分与非酒精性脂肪性肝炎肝硬化门静脉高压评估相关。

Machine learning liver histology scores correlate with portal hypertension assessments in nonalcoholic steatohepatitis cirrhosis.

机构信息

Houston Methodist Hospital and Houston Research Institute, Houston, Texas, USA.

Inova Fairfax Hospital, Falls Church, Virginia, USA.

出版信息

Aliment Pharmacol Ther. 2023 Feb;57(4):409-417. doi: 10.1111/apt.17363. Epub 2023 Jan 17.


DOI:10.1111/apt.17363
PMID:36647687
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10107331/
Abstract

BACKGROUND AND AIMS: In cirrhotic nonalcoholic steatohepatitis (NASH) clinical trials, primary efficacy endpoints have been hepatic venous pressure gradient (HVPG), liver histology and clinical liver outcomes. Important histologic features, such as septa thickness, nodules features and fibrosis area have not been included in the histologic assessment and may have important clinical relevance. We assessed these features with a machine learning (ML) model. METHODS: NASH patients with compensated cirrhosis and HVPG ≥6 mm Hg (n = 143) from the Belapectin phase 2b trial were studied. Liver biopsies, HVPG measurements and upper endoscopies were performed at baseline and at end of treatment (EOT). A second harmonic generation/two-photon excitation fluorescence provided an automated quantitative assessment of septa, nodules and fibrosis (SNOF). We created ML scores and tested their association with HVPG, clinically significant HVPG (≥10 mm Hg) and the presence of varices (SNOF-V). RESULTS: We derived 448 histologic variables (243 related to septa, 21 related to nodules and 184 related to fibrosis). The SNOF score (≥11.78) reliably distinguished CSPH at baseline and in the validation cohort (baseline + EOT) [AUC = 0.85 and 0.74, respectively]. The SNOF-V score (≥0.57) distinguished the presence of varices at baseline and in the same validation cohort [AUC = 0.86 and 0.73, respectively]. Finally, the SNOF-C score differentiated those who had >20% change in HVPG against those who did not, with an AUROC of 0.89. CONCLUSION: The ML algorithm accurately predicted HVPG, CSPH, the development of varices and HVPG changes in patients with NASH cirrhosis. The use of ML histology model in NASH cirrhosis trials may improve the assessment of key outcome changes.

摘要

背景与目的:在肝硬化非酒精性脂肪性肝炎(NASH)临床试验中,主要疗效终点为肝静脉压力梯度(HVPG)、肝脏组织学和临床肝脏结局。重要的组织学特征,如间隔厚度、结节特征和纤维化面积,并未包含在组织学评估中,但可能具有重要的临床相关性。我们使用机器学习(ML)模型评估了这些特征。

方法:来自 Belapectin 2b 期临床试验的 143 例代偿性肝硬化且 HVPG≥6mmHg 的 NASH 患者进行了研究。基线和治疗结束时(EOT)进行了肝活检、HVPG 测量和上内窥镜检查。二次谐波产生/双光子激发荧光提供了间隔、结节和纤维化的自动定量评估(SNOF)。我们创建了 ML 评分,并测试了它们与 HVPG、临床显著 HVPG(≥10mmHg)和静脉曲张(SNOF-V)存在的相关性。

结果:我们得出了 448 个组织学变量(243 个与间隔有关,21 个与结节有关,184 个与纤维化有关)。SNOF 评分(≥11.78)可可靠地区分基线和验证队列中的 CSPH(基线+EOT)[AUC 分别为 0.85 和 0.74]。SNOF-V 评分(≥0.57)可区分基线和同一验证队列中静脉曲张的存在[AUC 分别为 0.86 和 0.73]。最后,SNOF-C 评分区分了 HVPG 变化>20%的患者与未变化的患者,AUROC 为 0.89。

结论:ML 算法准确预测了 NASH 肝硬化患者的 HVPG、CSPH、静脉曲张的发展和 HVPG 的变化。在 NASH 肝硬化试验中使用 ML 组织学模型可能会改善关键结局变化的评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b99c/10107331/1107eb54ea3e/APT-57-409-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b99c/10107331/dcc8a3117082/APT-57-409-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b99c/10107331/de215334ed6a/APT-57-409-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b99c/10107331/105c6de667db/APT-57-409-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b99c/10107331/8410bcab28a9/APT-57-409-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b99c/10107331/1107eb54ea3e/APT-57-409-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b99c/10107331/dcc8a3117082/APT-57-409-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b99c/10107331/de215334ed6a/APT-57-409-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b99c/10107331/105c6de667db/APT-57-409-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b99c/10107331/8410bcab28a9/APT-57-409-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b99c/10107331/1107eb54ea3e/APT-57-409-g002.jpg

相似文献

[1]
Machine learning liver histology scores correlate with portal hypertension assessments in nonalcoholic steatohepatitis cirrhosis.

Aliment Pharmacol Ther. 2023-2

[2]
Effects of Belapectin, an Inhibitor of Galectin-3, in Patients With Nonalcoholic Steatohepatitis With Cirrhosis and Portal Hypertension.

Gastroenterology. 2019-12-5

[3]
A Machine Learning Approach to Liver Histological Evaluation Predicts Clinically Significant Portal Hypertension in NASH Cirrhosis.

Hepatology. 2021-12

[4]
Randomized placebo-controlled trial of emricasan for non-alcoholic steatohepatitis-related cirrhosis with severe portal hypertension.

J Hepatol. 2020-5

[5]
Prognostic performance of non-invasive tests for portal hypertension is comparable to that of hepatic venous pressure gradient.

J Hepatol. 2024-5

[6]
Patients With Signs of Advanced Liver Disease and Clinically Significant Portal Hypertension Do Not Necessarily Have Cirrhosis.

Clin Gastroenterol Hepatol. 2019-1-6

[7]
The prognostic value of HVPG-response to non-selective beta-blockers in patients with NASH cirrhosis and varices.

Dig Liver Dis. 2022-4

[8]
Clinical significance of measuring hepatic venous pressure gradient on transjugular liver biopsy for patients with pre-cirrhotic bridging fibrosis liver disease.

Clin Imaging. 2023-4

[9]
Noninvasive predictors of clinically significant portal hypertension in NASH cirrhosis: Validation of ANTICIPATE models and development of a lab-based model.

Hepatol Commun. 2022-12

[10]
Simtuzumab Is Ineffective for Patients With Bridging Fibrosis or Compensated Cirrhosis Caused by Nonalcoholic Steatohepatitis.

Gastroenterology. 2018-7-7

引用本文的文献

[1]
AI in Hepatology: Revolutionizing the Diagnosis and Management of Liver Disease.

J Clin Med. 2024-12-22

[2]
Digital quantitation of bridging fibrosis and septa reveals changes in natural history and treatment not seen with conventional histology.

Liver Int. 2024-12

[3]
Endpoints in NASH Clinical Trials: Are We Blind in One Eye?

Metabolites. 2024-1-8

[4]
Artificial intelligence-assisted digital pathology for non-alcoholic steatohepatitis: current status and future directions.

J Hepatol. 2024-2

[5]
Exploring Opportunities to Enhance the Screening and Surveillance of Hepatocellular Carcinoma in Non-Alcoholic Fatty Liver Disease (NAFLD) through Risk Stratification Algorithms Incorporating Ultrasound Elastography.

Cancers (Basel). 2023-8-14

本文引用的文献

[1]
Derivation and validation of the nonalcoholic fatty liver disease cirrhosis score (NCS) to distinguish bridging fibrosis from cirrhosis.

Eur J Intern Med. 2022-4

[2]
Cirrhosis regression is associated with improved clinical outcomes in patients with nonalcoholic steatohepatitis.

Hepatology. 2022-5

[3]
Can We Rely on Changes in HVPG in Patients with Cirrhosis?

Hepatology. 2021-12

[4]
A Machine Learning Approach to Liver Histological Evaluation Predicts Clinically Significant Portal Hypertension in NASH Cirrhosis.

Hepatology. 2021-12

[5]
Test-Retest Reliability and Consistency of HVPG and Impact on Trial Design: A Study in 289 Patients from 20 Randomized Controlled Trials.

Hepatology. 2021-12

[6]
Thick Fibrous Septa on Liver Biopsy Specimens Predict the Development of Decompensation in Patients With Compensated Cirrhosis.

Am J Clin Pathol. 2021-10-13

[7]
Application of Artificial Intelligence for Diagnosis and Risk Stratification in NAFLD and NASH: The State of the Art.

Hepatology. 2021-10

[8]
Artificial Intelligence in NASH Histology: Human Teaches a Machine for the Machine to Help Humans.

Hepatology. 2021-7

[9]
Review of galectin-3 inhibitors in the treatment of nonalcoholic steatohepatitis.

Expert Rev Clin Pharmacol. 2021-4

[10]
Therapeutic pipeline in nonalcoholic steatohepatitis.

Nat Rev Gastroenterol Hepatol. 2021-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索