Houston Methodist Hospital and Houston Research Institute, Houston, Texas, USA.
Inova Fairfax Hospital, Falls Church, Virginia, USA.
Aliment Pharmacol Ther. 2023 Feb;57(4):409-417. doi: 10.1111/apt.17363. Epub 2023 Jan 17.
BACKGROUND AND AIMS: In cirrhotic nonalcoholic steatohepatitis (NASH) clinical trials, primary efficacy endpoints have been hepatic venous pressure gradient (HVPG), liver histology and clinical liver outcomes. Important histologic features, such as septa thickness, nodules features and fibrosis area have not been included in the histologic assessment and may have important clinical relevance. We assessed these features with a machine learning (ML) model. METHODS: NASH patients with compensated cirrhosis and HVPG ≥6 mm Hg (n = 143) from the Belapectin phase 2b trial were studied. Liver biopsies, HVPG measurements and upper endoscopies were performed at baseline and at end of treatment (EOT). A second harmonic generation/two-photon excitation fluorescence provided an automated quantitative assessment of septa, nodules and fibrosis (SNOF). We created ML scores and tested their association with HVPG, clinically significant HVPG (≥10 mm Hg) and the presence of varices (SNOF-V). RESULTS: We derived 448 histologic variables (243 related to septa, 21 related to nodules and 184 related to fibrosis). The SNOF score (≥11.78) reliably distinguished CSPH at baseline and in the validation cohort (baseline + EOT) [AUC = 0.85 and 0.74, respectively]. The SNOF-V score (≥0.57) distinguished the presence of varices at baseline and in the same validation cohort [AUC = 0.86 and 0.73, respectively]. Finally, the SNOF-C score differentiated those who had >20% change in HVPG against those who did not, with an AUROC of 0.89. CONCLUSION: The ML algorithm accurately predicted HVPG, CSPH, the development of varices and HVPG changes in patients with NASH cirrhosis. The use of ML histology model in NASH cirrhosis trials may improve the assessment of key outcome changes.
背景与目的:在肝硬化非酒精性脂肪性肝炎(NASH)临床试验中,主要疗效终点为肝静脉压力梯度(HVPG)、肝脏组织学和临床肝脏结局。重要的组织学特征,如间隔厚度、结节特征和纤维化面积,并未包含在组织学评估中,但可能具有重要的临床相关性。我们使用机器学习(ML)模型评估了这些特征。
方法:来自 Belapectin 2b 期临床试验的 143 例代偿性肝硬化且 HVPG≥6mmHg 的 NASH 患者进行了研究。基线和治疗结束时(EOT)进行了肝活检、HVPG 测量和上内窥镜检查。二次谐波产生/双光子激发荧光提供了间隔、结节和纤维化的自动定量评估(SNOF)。我们创建了 ML 评分,并测试了它们与 HVPG、临床显著 HVPG(≥10mmHg)和静脉曲张(SNOF-V)存在的相关性。
结果:我们得出了 448 个组织学变量(243 个与间隔有关,21 个与结节有关,184 个与纤维化有关)。SNOF 评分(≥11.78)可可靠地区分基线和验证队列中的 CSPH(基线+EOT)[AUC 分别为 0.85 和 0.74]。SNOF-V 评分(≥0.57)可区分基线和同一验证队列中静脉曲张的存在[AUC 分别为 0.86 和 0.73]。最后,SNOF-C 评分区分了 HVPG 变化>20%的患者与未变化的患者,AUROC 为 0.89。
结论:ML 算法准确预测了 NASH 肝硬化患者的 HVPG、CSPH、静脉曲张的发展和 HVPG 的变化。在 NASH 肝硬化试验中使用 ML 组织学模型可能会改善关键结局变化的评估。
Clin Gastroenterol Hepatol. 2019-1-6
J Clin Med. 2024-12-22
Metabolites. 2024-1-8
Hepatology. 2021-12
Expert Rev Clin Pharmacol. 2021-4
Nat Rev Gastroenterol Hepatol. 2021-6