Ratziu Vlad, Hompesch Marcus, Petitjean Mathieu, Serdjebi Cindy, Iyer Janani S, Parwani Anil V, Tai Dean, Bugianesi Elisabetta, Cusi Kenneth, Friedman Scott L, Lawitz Eric, Romero-Gómez Manuel, Schuppan Detlef, Loomba Rohit, Paradis Valérie, Behling Cynthia, Sanyal Arun J
Sorbonne Université, ICAN Institute for Cardiometabolism and Nutrition, Hospital Pitié-Salpêtrière, INSERM UMRS 1138 CRC, Paris, France.
ProSciento, San Diego, CA, USA.
J Hepatol. 2024 Feb;80(2):335-351. doi: 10.1016/j.jhep.2023.10.015. Epub 2023 Oct 24.
The worldwide prevalence of non-alcoholic steatohepatitis (NASH) is increasing, causing a significant medical burden, but no approved therapeutics are currently available. NASH drug development requires histological analysis of liver biopsies by expert pathologists for trial enrolment and efficacy assessment, which can be hindered by multiple issues including sample heterogeneity, inter-reader and intra-reader variability, and ordinal scoring systems. Consequently, there is a high unmet need for accurate, reproducible, quantitative, and automated methods to assist pathologists with histological analysis to improve the precision around treatment and efficacy assessment. Digital pathology (DP) workflows in combination with artificial intelligence (AI) have been established in other areas of medicine and are being actively investigated in NASH to assist pathologists in the evaluation and scoring of NASH histology. DP/AI models can be used to automatically detect, localise, quantify, and score histological parameters and have the potential to reduce the impact of scoring variability in NASH clinical trials. This narrative review provides an overview of DP/AI tools in development for NASH, highlights key regulatory considerations, and discusses how these advances may impact the future of NASH clinical management and drug development. This should be a high priority in the NASH field, particularly to improve the development of safe and effective therapeutics.
非酒精性脂肪性肝炎(NASH)在全球的患病率正在上升,造成了巨大的医疗负担,但目前尚无获批的治疗方法。NASH药物研发需要专业病理学家对肝活检进行组织学分析,以确定试验入组和评估疗效,而这可能会受到多种问题的阻碍,包括样本异质性、阅片者间和阅片者内的变异性以及序贯评分系统。因此,迫切需要准确、可重复、定量和自动化的方法来协助病理学家进行组织学分析,以提高治疗和疗效评估的准确性。数字病理学(DP)工作流程与人工智能(AI)相结合已在医学的其他领域得到应用,目前正在NASH领域积极研究,以协助病理学家对NASH组织学进行评估和评分。DP/AI模型可用于自动检测、定位、量化和对组织学参数进行评分,并有可能减少NASH临床试验中评分变异性的影响。本叙述性综述概述了正在开发的用于NASH的DP/AI工具,强调了关键的监管考虑因素,并讨论了这些进展可能如何影响NASH临床管理和药物研发的未来。这应该是NASH领域的高度优先事项,特别是为了促进安全有效的治疗方法的开发。