文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于肝脏组织学评估的机器学习方法可预测非酒精性脂肪性肝炎肝硬化患者临床上显著的门静脉高压。

A Machine Learning Approach to Liver Histological Evaluation Predicts Clinically Significant Portal Hypertension in NASH Cirrhosis.

作者信息

Bosch Jaime, Chung Chuhan, Carrasco-Zevallos Oscar M, Harrison Stephen A, Abdelmalek Manal F, Shiffman Mitchell L, Rockey Don C, Shanis Zahil, Juyal Dinkar, Pokkalla Harsha, Le Quang Huy, Resnick Murray, Montalto Michael, Beck Andrew H, Wapinski Ilan, Han Ling, Jia Catherine, Goodman Zachary, Afdhal Nezam, Myers Robert P, Sanyal Arun J

机构信息

Department of Biomedical Research, University of Bern, Bern, Switzerland.

University of Barcelona-IDIBAPS and CIBERehd, Barcelona, Spain.

出版信息

Hepatology. 2021 Dec;74(6):3146-3160. doi: 10.1002/hep.32087.


DOI:10.1002/hep.32087
PMID:34333790
Abstract

BACKGROUND AND AIMS: The hepatic venous pressure gradient (HVPG) is the standard for estimating portal pressure but requires expertise for interpretation. We hypothesized that HVPG could be extrapolated from liver histology using a machine learning (ML) algorithm. APPROACH AND RESULTS: Patients with NASH with compensated cirrhosis from a phase 2b trial were included. HVPG and biopsies from baseline and weeks 48 and 96 were reviewed centrally, and biopsies evaluated with a convolutional neural network (PathAI, Boston, MA). Using trichrome-stained biopsies in the training set (n = 130), an ML model was developed to recognize fibrosis patterns associated with HVPG, and the resultant ML HVPG score was validated in a held-out test set (n = 88). Associations between the ML HVPG score with measured HVPG and liver-related events, and performance of the ML HVPG score for clinically significant portal hypertension (CSPH) (HVPG ≥ 10 mm Hg), were determined. The ML-HVPG score was more strongly correlated with HVPG than hepatic collagen by morphometry (ρ = 0.47 vs. ρ = 0.28; P < 0.001). The ML HVPG score differentiated patients with normal (0-5 mm Hg) and elevated (5.5-9.5 mm Hg) HVPG and CSPH (median: 1.51 vs. 1.93 vs. 2.60; all P < 0.05). The areas under receiver operating characteristic curve (AUROCs) (95% CI) of the ML-HVPG score for CSPH were 0.85 (0.80, 0.90) and 0.76 (0.68, 0.85) in the training and test sets, respectively. Discrimination of the ML-HVPG score for CSPH improved with the addition of a ML parameter for nodularity, Enhanced Liver Fibrosis, platelets, aspartate aminotransferase (AST), and bilirubin (AUROC in test set: 0.85; 95% CI: 0.78, 0.92). Although baseline ML-HVPG score was not prognostic, changes were predictive of clinical events (HR: 2.13; 95% CI: 1.26, 3.59) and associated with hemodynamic response and fibrosis improvement. CONCLUSIONS: An ML model based on trichrome-stained liver biopsy slides can predict CSPH in patients with NASH with cirrhosis.

摘要

背景与目的:肝静脉压力梯度(HVPG)是评估门静脉压力的标准,但解读需要专业知识。我们假设可以使用机器学习(ML)算法从肝脏组织学推断HVPG。 方法与结果:纳入了来自一项2b期试验的非酒精性脂肪性肝炎(NASH)合并代偿期肝硬化患者。对基线、第48周和第96周的HVPG和活检样本进行集中审查,并使用卷积神经网络(PathAI,马萨诸塞州波士顿)对活检样本进行评估。在训练集(n = 130)中使用三色染色的活检样本,开发了一个ML模型以识别与HVPG相关的纤维化模式,并在一个保留测试集(n = 88)中对所得的ML HVPG评分进行验证。确定ML HVPG评分与测量的HVPG和肝脏相关事件之间的关联,以及ML HVPG评分对临床显著门静脉高压(CSPH)(HVPG≥10 mmHg)的表现。ML-HVPG评分与HVPG的相关性比形态计量学测定的肝胶原更强(ρ = 0.47对ρ = 0.28;P < 0.001)。ML HVPG评分能够区分HVPG正常(0 - 5 mmHg)、升高(5.5 - 9.5 mmHg)和CSPH的患者(中位数:1.51对1.93对2.60;所有P < 0.05)。在训练集和测试集中,ML-HVPG评分对CSPH的受试者工作特征曲线下面积(AUROCs)(95% CI)分别为0.85(0.80, 0.90)和0.76(0.68, 0.85)。通过添加结节性、增强肝纤维化、血小板、天冬氨酸转氨酶(AST)和胆红素的ML参数,ML-HVPG评分对CSPH的辨别能力得到改善(测试集中的AUROC:0.85;95% CI:0.78, 0.92)。尽管基线ML-HVPG评分无预后价值,但变化可预测临床事件(HR:2.13;95% CI:1.26, 3.59),并与血流动力学反应和纤维化改善相关。 结论:基于三色染色肝活检切片的ML模型可预测NASH合并肝硬化患者的CSPH。

相似文献

[1]
A Machine Learning Approach to Liver Histological Evaluation Predicts Clinically Significant Portal Hypertension in NASH Cirrhosis.

Hepatology. 2021-12

[2]
Machine learning liver histology scores correlate with portal hypertension assessments in nonalcoholic steatohepatitis cirrhosis.

Aliment Pharmacol Ther. 2023-2

[3]
Prognostic performance of non-invasive tests for portal hypertension is comparable to that of hepatic venous pressure gradient.

J Hepatol. 2024-5

[4]
The impact of hepatic steatosis on portal hypertension.

PLoS One. 2019-11-6

[5]
Effects of Belapectin, an Inhibitor of Galectin-3, in Patients With Nonalcoholic Steatohepatitis With Cirrhosis and Portal Hypertension.

Gastroenterology. 2019-12-5

[6]
Non-invasive detection of portal hypertension by enhanced liver fibrosis score in patients with different aetiologies of advanced chronic liver disease.

Liver Int. 2020-7

[7]
Randomized placebo-controlled trial of emricasan for non-alcoholic steatohepatitis-related cirrhosis with severe portal hypertension.

J Hepatol. 2020-5

[8]
The usefulness of non-invasive liver stiffness measurements in predicting clinically significant portal hypertension in cirrhotic patients: Korean data.

Clin Mol Hepatol. 2013-12-28

[9]
Non-invasive aspartate aminotransferase to platelet ratio index correlates well with invasive hepatic venous pressure gradient in cirrhosis.

Indian J Gastroenterol. 2018-7

[10]
Noninvasive Diagnosis of Portal Hypertension in Patients With Compensated Advanced Chronic Liver Disease.

Am J Gastroenterol. 2021-4

引用本文的文献

[1]
AI-Cirrhosis-ECG (ACE) score for predicting decompensation and liver outcomes.

JHEP Rep. 2025-2-19

[2]
Machine learning-based models for advanced fibrosis in non-alcoholic steatohepatitis patients: A cohort study.

World J Gastroenterol. 2025-3-7

[3]
Preventing the progression of cirrhosis to decompensation and death.

Nat Rev Gastroenterol Hepatol. 2025-4

[4]
AI in Hepatology: Revolutionizing the Diagnosis and Management of Liver Disease.

J Clin Med. 2024-12-22

[5]
A machine learning tool for early identification of celiac disease autoimmunity.

Sci Rep. 2024-12-28

[6]
Image-Guided Liver Biopsy: Perspectives from Interventional Radiology.

Semin Intervent Radiol. 2024-12-10

[7]
Digital quantitation of bridging fibrosis and septa reveals changes in natural history and treatment not seen with conventional histology.

Liver Int. 2024-12

[8]
AI-based automation of enrollment criteria and endpoint assessment in clinical trials in liver diseases.

Nat Med. 2024-10

[9]
Decoding pathology: the role of computational pathology in research and diagnostics.

Pflugers Arch. 2025-4

[10]
BiliQML: a supervised machine-learning model to quantify biliary forms from digitized whole slide liver histopathological images.

Am J Physiol Gastrointest Liver Physiol. 2024-7-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索