Suppr超能文献

使用基于神经网络的预测方法计算胶质母细胞瘤患者硼中子俘获治疗中的治疗剂量。

Use of a neural network-based prediction method to calculate the therapeutic dose in boron neutron capture therapy of patients with glioblastoma.

作者信息

Tian Feng, Zhao Sheng, Geng Changran, Guo Chang, Wu Renyao, Tang Xiaobin

机构信息

Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China.

Joint International Research Laboratory on Advanced Particle Therapy, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China.

出版信息

Med Phys. 2023 May;50(5):3008-3018. doi: 10.1002/mp.16215. Epub 2023 Jan 24.

Abstract

BACKGROUND

Boron neutron capture therapy (BNCT) is a binary radiotherapy based on the B(n, α) Li capture reaction. Nonradioactive isotope B atoms which selectively concentrated in tumor cells will react with low energy neutrons (mainly thermal neutrons) to produce secondary particles with high linear energy transfer, thus depositing dose in tumor cells. In clinical practice, an appropriate treatment plan needs to be set on the basis of the treatment planning system (TPS). Existing BNCT TPSs usually use the Monte Carlo method to determine the three-dimensional (3D) therapeutic dose distribution, which often requires a lot of calculation time due to the complexity of simulating neutron transportation.

PURPOSE

A neural network-based BNCT dose prediction method is proposed to achieve the rapid and accurate acquisition of BNCT 3D therapeutic dose distribution for patients with glioblastoma to solve the time-consuming problem of BNCT dose calculation in clinic.

METHODS

The clinical data of 122 patients with glioblastoma are collected. Eighteen patients are used as a test set, and the rest are used as a training set. The 3D-UNET is constructed through the design optimization of input and output data sets based on radiation field information and patient CT information to enable the prediction of 3D dose distribution of BNCT.

RESULTS

The average mean absolute error of the predicted and simulated equivalent doses of each organ are all less than 1 Gy. For the dose to 95% of the GTV volume (D ), the relative deviation between predicted and simulated results are all less than 2%. The average 2 mm/2% gamma index is 89.67%, and the average 3 mm/3% gamma index is 96.78%. The calculation takes about 6 h to simulate the 3D therapeutic dose distribution of a patient with glioblastoma by Monte Carlo method using Intel Xeon E5-2699 v4, whereas the time required by the method proposed in this study is almost less than 1 s using a Titan-V graphics card.

CONCLUSIONS

This study proposes a 3D dose prediction method based on 3D-UNET architecture in BNCT, and the feasibility of this method is demonstrated. Results indicate that the method can remarkably reduce the time required for calculation and ensure the accuracy of the predicted 3D therapeutic dose-effect. This work is expected to promote the clinical development of BNCT in the future.

摘要

背景

硼中子俘获疗法(BNCT)是一种基于B(n,α)Li俘获反应的二元放射疗法。选择性富集在肿瘤细胞中的非放射性同位素硼原子会与低能中子(主要是热中子)发生反应,产生具有高线性能量传递的次级粒子,从而在肿瘤细胞中沉积剂量。在临床实践中,需要基于治疗计划系统(TPS)制定合适的治疗方案。现有的BNCT TPS通常使用蒙特卡罗方法来确定三维(3D)治疗剂量分布,由于模拟中子输运的复杂性,这通常需要大量的计算时间。

目的

提出一种基于神经网络的BNCT剂量预测方法,以实现快速准确地获取胶质母细胞瘤患者的BNCT 3D治疗剂量分布,解决临床中BNCT剂量计算耗时的问题。

方法

收集122例胶质母细胞瘤患者的临床数据。18例患者作为测试集,其余患者作为训练集。基于辐射野信息和患者CT信息,通过对输入和输出数据集进行设计优化构建3D-UNET,以实现对BNCT的3D剂量分布进行预测。

结果

各器官预测等效剂量与模拟等效剂量的平均平均绝对误差均小于1 Gy。对于95%的大体肿瘤体积(GTV)的剂量(D ),预测结果与模拟结果之间的相对偏差均小于2%。平均2 mm/2%伽马指数为89.67%,平均3 mm/3%伽马指数为96.78%。使用英特尔至强E5-2699 v4通过蒙特卡罗方法模拟一名胶质母细胞瘤患者的3D治疗剂量分布大约需要6小时,而本研究提出的方法使用Titan-V图形卡所需时间几乎不到1秒。

结论

本研究提出了一种基于3D-UNET架构的BNCT 3D剂量预测方法,并证明了该方法的可行性。结果表明,该方法可显著减少计算所需时间,并确保预测的3D治疗剂量效应准确性。这项工作有望在未来推动BNCT的临床发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验