Suppr超能文献

一种用于 BNCT 剂量计算的物理约束蒙特卡罗-神经网络耦合算法。

A physically constrained Monte Carlo-Neural Network coupling algorithm for BNCT dose calculation.

机构信息

School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China.

Southeast Research Institute of Lanzhou University, Putian, China.

出版信息

Med Phys. 2024 Jun;51(6):4524-4535. doi: 10.1002/mp.16966. Epub 2024 Feb 1.

Abstract

BACKGROUND

In boron neutron capture therapy (BNCT)-a form of binary radiotherapy-the primary challenge in treatment planning systems for dose calculations arises from the time-consuming nature of the Monte Carlo (MC) method. Recent progress, including the use of neural networks (NN), has been made to accelerate BNCT dose calculations. However, this approach may result in significant dose errors in both the tumor and the skin, with the latter being a critical organ in BNCT. Furthermore, owing to the lack of physical processes in purely NN-based approaches, their reliability for clinical dose calculations in BNCT is questionable.

PURPOSE

In this study, a physically constrained MC-NN (PCMC-NN) coupling algorithm is proposed to achieve fast and accurate computation of the BNCT three-dimensional (3D) therapeutic dose distribution. This approach synergizes the high precision of the MC method with the speed of the NN and utilizes physical conservation laws to constrain the coupling process. It addresses the time-consuming issue of the traditional MC method while reducing dose errors.

METHODS

Clinical data were collected from 113 glioblastoma patients. For each patient, the 3D dose distributions for both the coarse and detailed dose grids were calculated using the MC code PHITS. Among these patients, the data from 14 patients were allocated to the test set, 9 to the validation set, and the remaining to the training set. A neural network, 3D-Unet, was built based on the coarse grid dose and patient CT information to enable fast and accurate computation of the 3D detailed grid dose distribution of BNCT.

RESULTS

Statistical evaluations, including relative deviation, dose deviation, mean absolute error (MAE), and mean absolute percentage error (MAPE) were conducted. Our findings suggested that the PCMC-NN algorithm substantially outperformed the traditional NN and interpolation methods. Furthermore, the proposed algorithm significantly reduced errors, particularly in the skin and GTV, and improved computational accuracy (hereinafter referred to simply as 'accuracy') with a MAPE range of 1.6%-4.0% and a maximum MAE of 0.3 Gy (IsoE) for different organs. The dose-volume histograms generated by the PCMC-NN aligned well with those obtained from the MC method, further validating its accuracy.

CONCLUSIONS

The PCMC-NN algorithm enhanced the speed and accuracy of BNCT dose calculations by combining the MC method with the NN algorithm. This indicates the significant potential of the proposed algorithm for clinical applications in optimizing treatment planning.

摘要

背景

在硼中子俘获治疗(BNCT)——一种二元放射疗法中,蒙特卡罗(MC)方法的耗时性质是治疗计划系统中剂量计算的主要挑战。最近的进展包括使用神经网络(NN)来加速 BNCT 剂量计算。然而,这种方法可能导致肿瘤和皮肤中的剂量误差显著,后者是 BNCT 中的一个关键器官。此外,由于纯基于 NN 的方法中缺乏物理过程,其在 BNCT 中的临床剂量计算的可靠性值得怀疑。

目的

本研究提出了一种物理约束的 MC-NN(PCMC-NN)耦合算法,以实现 BNCT 三维(3D)治疗剂量分布的快速准确计算。该方法结合了 MC 方法的高精度和 NN 的速度,并利用物理守恒定律来约束耦合过程。它解决了传统 MC 方法耗时的问题,同时减少了剂量误差。

方法

从 113 名胶质母细胞瘤患者中收集临床数据。对于每个患者,使用 PHITS MC 代码计算粗网格和细网格的 3D 剂量分布。在这些患者中,将 14 名患者的数据分配到测试集,9 名到验证集,其余的到训练集。基于粗网格剂量和患者 CT 信息构建神经网络 3D-Unet,以便快速准确地计算 BNCT 的 3D 详细网格剂量分布。

结果

进行了统计评估,包括相对偏差、剂量偏差、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)。我们的研究结果表明,PCMC-NN 算法显著优于传统的 NN 和插值方法。此外,该算法显著降低了误差,特别是在皮肤和 GTV 中,提高了计算精度(以下简称“精度”),不同器官的 MAPE 范围为 1.6%-4.0%,最大 MAE 为 0.3 Gy(IsoE)。PCMC-NN 生成的剂量-体积直方图与 MC 方法获得的结果吻合良好,进一步验证了其准确性。

结论

PCMC-NN 算法通过将 MC 方法与 NN 算法相结合,提高了 BNCT 剂量计算的速度和准确性。这表明该算法在优化治疗计划的临床应用中具有重要潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验