文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

GluA3 亚基对于在耳蜗传入神经突触上 AMPAR GluA2 和 GluA4 亚基的适当组装以及对突触前带结构-纤毛柱状体形态的形成是必需的。

GluA3 subunits are required for appropriate assembly of AMPAR GluA2 and GluA4 subunits on cochlear afferent synapses and for presynaptic ribbon modiolar-pillar morphology.

机构信息

Department of Otolaryngology, Washington University School of Medicine, St Louis, United States.

Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, United States.

出版信息

Elife. 2023 Jan 17;12:e80950. doi: 10.7554/eLife.80950.


DOI:10.7554/eLife.80950
PMID:36648432
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9891727/
Abstract

Cochlear sound encoding depends on α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs), but reliance on specific pore-forming subunits is unknown. With 5-week-old male C57BL/6J -knockout mice (i.e., subunit GluA3) we determined cochlear function, synapse ultrastructure, and AMPAR molecular anatomy at ribbon synapses between inner hair cells (IHCs) and spiral ganglion neurons. GluA3 and wild-type (GluA3) mice reared in ambient sound pressure level (SPL) of 55-75 dB had similar auditory brainstem response (ABR) thresholds, wave-1 amplitudes, and latencies. Postsynaptic densities (PSDs), presynaptic ribbons, and synaptic vesicle sizes were all larger on the modiolar side of the IHCs from GluA3, but not GluA3, demonstrating GluA3 is required for modiolar-pillar synapse differentiation. Presynaptic ribbons juxtaposed with postsynaptic GluA2/4 subunits were similar in quantity, however, lone ribbons were more frequent in GluA3 and GluA2-lacking synapses were observed only in GluA3. GluA2 and GluA4 immunofluorescence volumes were smaller on the pillar side than the modiolar side in GluA3, despite increased pillar-side PSD size. Overall, the fluorescent puncta volumes of GluA2 and GluA4 were smaller in GluA3 than GluA3. However, GluA3 contained less GluA2 and greater GluA4 immunofluorescence intensity relative to GluA3 (threefold greater mean GluA4:GluA2 ratio). Thus, GluA3 is essential in development, as germline disruption of caused anatomical synapse pathology before cochlear output became symptomatic by ABR. We propose the hearing loss in older male GluA3 mice results from progressive synaptopathy evident in 5-week-old mice as decreased abundance of GluA2 subunits and an increase in GluA2-lacking, GluA4-monomeric Ca-permeable AMPARs.

摘要

耳蜗的声音编码依赖于α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPARs),但对特定的孔形成亚基的依赖尚不清楚。我们使用 5 周龄的雄性 C57BL/6J 敲除小鼠(即 GluA3 亚基),在内外毛细胞(IHC)和螺旋神经节神经元之间的带状突触处,确定了耳蜗功能、突触超微结构和 AMPAR 分子解剖结构。GluA3 和野生型(GluA3)小鼠在环境声压水平(SPL)为 55-75 dB 下饲养,其听觉脑干反应(ABR)阈值、波 1 幅度和潜伏期相似。突触后密度(PSD)、突触前带和突触小泡大小在内耳细胞的蜗轴侧均大于 GluA3,但 GluA3 除外,表明 GluA3 是蜗轴-柱突突触分化所必需的。与突触后 GluA2/4 亚基并列的突触前带数量相似,然而,在 GluA3 中单独的带更为常见,并且仅在 GluA3 中观察到缺乏 GluA2 的突触。尽管柱侧 PSD 大小增加,但 GluA2 和 GluA4 的免疫荧光体积在柱侧小于蜗轴侧。总体而言,与 GluA3 相比,GluA2 和 GluA4 的荧光斑点体积较小。然而,与 GluA3 相比,GluA3 含有更少的 GluA2 和更大的 GluA4 免疫荧光强度(GluA4:GluA2 比值增加三倍)。因此,在发育过程中,由于配子系破坏导致的解剖突触病变,在 ABR 出现症状之前,导致 GluA3 变得必不可少。我们提出,老年雄性 GluA3 小鼠的听力损失是由于 5 周龄小鼠中明显的突触病变导致 GluA2 亚基丰度降低和缺乏 GluA2、GluA4 单体钙通透性 AMPARs 增加所致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51c/9891727/064432f942d2/elife-80950-sa2-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51c/9891727/d15ea0ba420f/elife-80950-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51c/9891727/8b325a62cab4/elife-80950-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51c/9891727/26166f8cb946/elife-80950-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51c/9891727/211aead24ac5/elife-80950-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51c/9891727/41eeda90114d/elife-80950-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51c/9891727/7b484c407c0d/elife-80950-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51c/9891727/40d656b85ebf/elife-80950-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51c/9891727/6b46dcb90372/elife-80950-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51c/9891727/ea68ed067acf/elife-80950-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51c/9891727/d85aa74b473b/elife-80950-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51c/9891727/103f81e76c4f/elife-80950-fig8-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51c/9891727/89099b440e4d/elife-80950-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51c/9891727/064432f942d2/elife-80950-sa2-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51c/9891727/d15ea0ba420f/elife-80950-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51c/9891727/8b325a62cab4/elife-80950-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51c/9891727/26166f8cb946/elife-80950-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51c/9891727/211aead24ac5/elife-80950-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51c/9891727/41eeda90114d/elife-80950-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51c/9891727/7b484c407c0d/elife-80950-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51c/9891727/40d656b85ebf/elife-80950-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51c/9891727/6b46dcb90372/elife-80950-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51c/9891727/ea68ed067acf/elife-80950-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51c/9891727/d85aa74b473b/elife-80950-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51c/9891727/103f81e76c4f/elife-80950-fig8-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51c/9891727/89099b440e4d/elife-80950-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51c/9891727/064432f942d2/elife-80950-sa2-fig1.jpg

相似文献

[1]
GluA3 subunits are required for appropriate assembly of AMPAR GluA2 and GluA4 subunits on cochlear afferent synapses and for presynaptic ribbon modiolar-pillar morphology.

Elife. 2023-1-17

[2]
Female GluA3-KO mice show early onset hearing loss and afferent swellings in ambient sound levels.

bioRxiv. 2024-4-15

[3]
Protection of cochlear synapses from noise-induced excitotoxic trauma by blockade of Ca-permeable AMPA receptors.

Proc Natl Acad Sci U S A. 2020-2-3

[4]
Impaired auditory processing and altered structure of the endbulb of Held synapse in mice lacking the GluA3 subunit of AMPA receptors.

Hear Res. 2017-2

[5]
Role of GluA3 AMPA Receptor Subunits in the Presynaptic and Postsynaptic Maturation of Synaptic Transmission and Plasticity of Endbulb-Bushy Cell Synapses in the Cochlear Nucleus.

J Neurosci. 2020-2-12

[6]
Vesicular Glutamatergic Transmission in Noise-Induced Loss and Repair of Cochlear Ribbon Synapses.

J Neurosci. 2019-3-29

[7]
The number and distribution of AMPA receptor channels containing fast kinetic GluA3 and GluA4 subunits at auditory nerve synapses depend on the target cells.

Brain Struct Funct. 2017-4-10

[8]
Maturation of Heterogeneity in Afferent Synapse Ultrastructure in the Mouse Cochlea.

Front Synaptic Neurosci. 2021-6-17

[9]
TARPs gamma-2 and gamma-7 are essential for AMPA receptor expression in the cerebellum.

Eur J Neurosci. 2010-6-7

[10]
Concurrent gradients of ribbon volume and AMPA-receptor patch volume in cochlear afferent synapses on gerbil inner hair cells.

Hear Res. 2018-7

引用本文的文献

[1]
A Scoping Review of Corticosterone-Induced Changes in Ionotropic Glutamate Receptor Levels and Localization in the Rodent Brain: Implications for the Auditory System.

Brain Sci. 2025-1-24

[2]
Female mice lacking GluA3 show early onset of hearing loss, cochlear synaptopathy, and afferent terminal swellings in ambient sound levels.

iScience. 2025-1-13

[3]
Gonad-derived steroid hormones mediate a sex difference in the maturation of auditory encoding in the cochlea from adolescence to early adulthood in C57BL/6J mice.

Hear Res. 2025-3

[4]
Female GluA3-KO mice show early onset hearing loss and afferent swellings in ambient sound levels.

bioRxiv. 2024-4-15

[5]
Noise-induced synaptic loss and its post-exposure recovery in CBA/CaJ vs. C57BL/6J mice.

Hear Res. 2024-4

[6]
Diversity matters - extending sound intensity coding by inner hair cells via heterogeneous synapses.

EMBO J. 2023-12-1

[7]
Otoferlin as a multirole Ca signaling protein: from inner ear synapses to cancer pathways.

Front Cell Neurosci. 2023-7-19

本文引用的文献

[1]
Cochlear ribbon synapse maturation requires Nlgn1 and Nlgn3.

iScience. 2022-7-20

[2]
Single-cell RNA-sequencing analysis of the developing mouse inner ear identifies molecular logic of auditory neuron diversification.

Nat Commun. 2022-7-5

[3]
Role of GluA4 in the acoustic and tactile startle responses.

Hear Res. 2022-2

[4]
Maturation of Heterogeneity in Afferent Synapse Ultrastructure in the Mouse Cochlea.

Front Synaptic Neurosci. 2021-6-17

[5]
Encoding sound in the cochlea: from receptor potential to afferent discharge.

J Physiol. 2021-5

[6]
Outer Hair Cell Glutamate Signaling through Type II Spiral Ganglion Afferents Activates Neurons in the Cochlear Nucleus in Response to Nondamaging Sounds.

J Neurosci. 2021-3-31

[7]
Role of GluA3 AMPA Receptor Subunits in the Presynaptic and Postsynaptic Maturation of Synaptic Transmission and Plasticity of Endbulb-Bushy Cell Synapses in the Cochlear Nucleus.

J Neurosci. 2020-2-12

[8]
Protection of cochlear synapses from noise-induced excitotoxic trauma by blockade of Ca-permeable AMPA receptors.

Proc Natl Acad Sci U S A. 2020-2-3

[9]
Ultrastructural and functional changes at the tripartite synapse during epileptogenesis in a model of temporal lobe epilepsy.

Exp Neurol. 2020-1-11

[10]
AP180 promotes release site clearance and clathrin-dependent vesicle reformation in mouse cochlear inner hair cells.

J Cell Sci. 2020-1-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索