Suppr超能文献

一种混合变形配准方法,用于生成运动补偿的三维虚拟 MRI,以便与介入实时三维超声融合。

A hybrid deformable registration method to generate motion-compensated 3D virtual MRI for fusion with interventional real-time 3D ultrasound.

机构信息

General Electric Research, Niskayuna, NY, USA.

Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA.

出版信息

Int J Comput Assist Radiol Surg. 2023 Aug;18(8):1501-1509. doi: 10.1007/s11548-023-02833-1. Epub 2023 Jan 17.

Abstract

PURPOSE

Ultrasound is often the preferred modality for image-guided therapy or treatment in organs such as liver due to real-time imaging capabilities. However, the reduced conspicuity of tumors in ultrasound images adversely impacts the precision and accuracy of treatment delivery. This problem is compounded by deformable motion due to breathing and other physiological activity. This creates the need for a fusion method to align interventional US with pre-interventional modalities that provide superior soft-tissue contrast (e.g., MRI) to accurately target a structure-of-interest and compensate for liver motion.

METHOD

In this work, we developed a hybrid deformable fusion method to align 3D pre-interventional MRI and 3D interventional US volumes to target the structures-of-interest in liver accurately in real-time. The deformable multimodal fusion method involved an offline alignment of a pre-intervention MRI with a pre-intervention US volume using a traditional registration method, followed by real-time prediction of deformation using a trained deep-learning model between interventional US volumes across different respiratory states. This framework enables motion-compensated MRI-US image fusion in real-time for image-guided treatment.

RESULTS

The proposed hybrid deformable registration method was evaluated on three healthy volunteers across the pre-intervention MRI and 20 US volume pairs in the free-breathing respiratory cycle. The mean Euclidean landmark distance of three homologous targets in all three volunteers was less than 3 mm for percutaneous liver procedures.

CONCLUSIONS

Preliminary results show that clinically acceptable registration accuracies for near real-time, deformable MRI-US fusion can be achieved by our proposed hybrid approach. The proposed combination of traditional and deep-learning deformable registration techniques is thus a promising approach for motion-compensated MRI-US fusion to improve targeting in image-guided liver interventions.

摘要

目的

由于实时成像功能,超声通常是肝脏等器官的图像引导治疗或治疗的首选方式。然而,肿瘤在超声图像中的对比度降低,会对治疗的精确性和准确性产生不利影响。由于呼吸和其他生理活动引起的可变形运动,使这个问题更加复杂。这就需要一种融合方法,将介入性超声与提供更好软组织对比度的预介入模态(例如 MRI)对齐,以准确地靶向感兴趣的结构,并补偿肝脏运动。

方法

在这项工作中,我们开发了一种混合可变形融合方法,以实时准确地将 3D 预介入 MRI 和 3D 介入性 US 体积对齐到肝脏中的感兴趣结构。这种多模态变形融合方法涉及使用传统的配准方法,对预介入 MRI 与预介入 US 体积进行离线配准,然后使用训练有素的深度学习模型,在不同呼吸状态下的介入性 US 体积之间实时预测变形。该框架能够实现运动补偿的 MRI-US 图像融合,以进行图像引导治疗。

结果

在所评估的三名健康志愿者中,对三个目标进行了评估,使用传统的配准方法对预介入 MRI 和 20 对 US 体积进行了配准,在自由呼吸的呼吸周期内进行了配准。所有三名志愿者的三个同源目标的平均欧几里得标志点距离小于 3 毫米,用于经皮肝程序。

结论

初步结果表明,通过我们提出的混合方法,可以实现接近实时的、可变形的 MRI-US 融合的临床可接受的配准精度。因此,传统和深度学习变形配准技术的组合是一种很有前途的运动补偿 MRI-US 融合方法,可以提高图像引导肝介入的靶向性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验