Balakrishnan Guha, Zhao Amy, Sabuncu Mert R, Guttag John, Dalca Adrian V
IEEE Trans Med Imaging. 2019 Feb 4. doi: 10.1109/TMI.2019.2897538.
We present VoxelMorph, a fast learning-based framework for deformable, pairwise medical image registration. Traditional registration methods optimize an objective function for each pair of images, which can be time-consuming for large datasets or rich deformation models. In contrast to this approach, and building on recent learning-based methods, we formulate registration as a function that maps an input image pair to a deformation field that aligns these images. We parameterize the function via a convolutional neural network (CNN), and optimize the parameters of the neural network on a set of images. Given a new pair of scans, VoxelMorph rapidly computes a deformation field by directly evaluating the function. In this work, we explore two different training strategies. In the first (unsupervised) setting, we train the model to maximize standard image matching objective functions that are based on the image intensities. In the second setting, we leverage auxiliary segmentations available in the training data. We demonstrate that the unsupervised model's accuracy is comparable to state-of-the-art methods, while operating orders of magnitude faster. We also show that VoxelMorph trained with auxiliary data improves registration accuracy at test time, and evaluate the effect of training set size on registration. Our method promises to speed up medical image analysis and processing pipelines, while facilitating novel directions in learning-based registration and its applications. Our code is freely available at https://github.com/voxelmorph/voxelmorph.
我们提出了VoxelMorph,这是一个基于快速学习的框架,用于可变形的成对医学图像配准。传统的配准方法为每对图像优化一个目标函数,对于大型数据集或丰富的变形模型来说可能很耗时。与这种方法不同,基于最近的基于学习的方法,我们将配准公式化为一个函数,该函数将输入图像对映射到使这些图像对齐的变形场。我们通过卷积神经网络(CNN)对该函数进行参数化,并在一组图像上优化神经网络的参数。给定一对新的扫描图像,VoxelMorph通过直接评估该函数快速计算出变形场。在这项工作中,我们探索了两种不同的训练策略。在第一种(无监督)设置中,我们训练模型以最大化基于图像强度的标准图像匹配目标函数。在第二种设置中,我们利用训练数据中可用的辅助分割。我们证明,无监督模型的准确性与现有技术方法相当,同时运行速度快几个数量级。我们还表明,使用辅助数据训练的VoxelMorph在测试时提高了配准精度,并评估了训练集大小对配准的影响。我们的方法有望加快医学图像分析和处理流程,同时促进基于学习的配准及其应用的新方向。我们的代码可在https://github.com/voxelmorph/voxelmorph上免费获取。