National Renewable Energy Laboratory, Golden, Colorado80401, United States.
Department of Chemistry, University of Kentucky, Lexington, Kentucky40506, United States.
J Am Chem Soc. 2023 Feb 1;145(4):2052-2057. doi: 10.1021/jacs.2c12441. Epub 2023 Jan 17.
The development of metal halide perovskite/perovskite heterostructures is hindered by rapid interfacial halide diffusion leading to mixed alloys rather than sharp interfaces. To circumvent this outcome, we developed an ion-blocking layer consisting of single-layer graphene (SLG) deposited between the metal halide perovskite layers and demonstrated that it effectively blocks anion diffusion in a CsPbBr/SLG/CsPbI heterostructure. Spatially resolved elemental analysis and spectroscopic measurements demonstrate the halides do not diffuse across the interface, whereas control samples without the SLG show rapid homogenization of the halides and loss of the sharp interface. Ultraviolet photoelectron spectroscopy, DFT calculations, and transient absorbance spectroscopy indicate the SLG has little electronic impact on the individual semiconductors. In the CsPbBr/SLG/CsPbI, we find a type I band alignment that supports transfer of photogenerated carriers across the heterointerface. Light-emitting diodes (LEDs) show electroluminescence from both the CsPbBr and CsPbI layers with no evidence of ion diffusion during operation. Our approach provides opportunities to design novel all-perovskite heterostructures to facilitate the control of charge and light in optoelectronic applications.
金属卤化物钙钛矿/钙钛矿异质结的发展受到快速界面卤化物扩散的阻碍,导致形成混合合金而不是锐利的界面。为了避免这种结果,我们开发了一种由沉积在金属卤化物钙钛矿层之间的单层石墨烯 (SLG) 组成的离子阻挡层,并证明它有效地阻止了 CsPbBr/SLG/CsPbI 异质结构中的阴离子扩散。空间分辨元素分析和光谱测量表明卤化物不会穿过界面扩散,而没有 SLG 的对照样品则显示卤化物迅速均匀化并失去锐利界面。紫外光电子能谱、DFT 计算和瞬态吸收光谱表明 SLG 对单个半导体几乎没有电子影响。在 CsPbBr/SLG/CsPbI 中,我们发现了一种支持光生载流子在异质界面上转移的 I 型能带排列。发光二极管 (LED) 显示 CsPbBr 和 CsPbI 层都有电致发光,在运行过程中没有证据表明离子扩散。我们的方法为设计新型全钙钛矿异质结构提供了机会,以促进光电应用中电荷和光的控制。