Tatarinov Danila A, Schleusener Alexander, Krahne Roman
Optoelectronics Group, Italian Institute of Technology, Genova, Italy.
Departement of Chemistry and Industrial Chemistry, Università Degli Studi di Genova, Genova, Italy.
Adv Sci (Weinh). 2025 Jun 20:e05971. doi: 10.1002/advs.202505971.
Metal halide perovskites have emerged as a transformative class of semiconductors, driving advancements in optoelectronics, photovoltaics, and sensing technologies. One of the key challenges in optimizing these materials for next-generation devices is controlling the flow of energy within them, which is highly sensitive to structural and dimensional factors. Recent advances in phase and dimensionality engineering have opened new avenues for tailoring energy transport and excitonic behaviors in perovskite heterostructures. By controlling the dimensionality and tuning the phases of perovskites, it is possible to achieve enhanced efficiency, stability, and selectivity in energy transfer processes. This perspective explores the fundamental principles of energy flow in perovskites and related materials, highlighting how phase transitions and dimensionality control can be leveraged to design optimized heterostructures for cutting-edge optoelectronic applications.
金属卤化物钙钛矿已成为一类具有变革性的半导体,推动了光电子学、光伏和传感技术的发展。为下一代器件优化这些材料的关键挑战之一是控制其内部的能量流动,这对结构和维度因素高度敏感。相和维度工程的最新进展为在钙钛矿异质结构中定制能量传输和激子行为开辟了新途径。通过控制钙钛矿的维度和调节其相,可以在能量转移过程中实现更高的效率、稳定性和选择性。本文探讨了钙钛矿及相关材料中能量流动的基本原理,强调了如何利用相变和维度控制来设计用于前沿光电子应用的优化异质结构。